In [ ]:
from __future__ import print_function, division, absolute_import
import GPy
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
%matplotlib inline
import safeopt
mpl.rcParams['figure.figsize'] = (20.0, 10.0)
mpl.rcParams['font.size'] = 20
mpl.rcParams['lines.markersize'] = 20
In [ ]:
# Measurement noise
noise_var = 0.05 ** 2
# Bounds on the inputs variable
bounds = [(-10., 10.)]
parameter_set = safeopt.linearly_spaced_combinations(bounds, 1000)
# Define Kernel
kernel = GPy.kern.RBF(input_dim=len(bounds), variance=2., lengthscale=1.0, ARD=True)
# Initial safe point
x0 = np.zeros((1, len(bounds)))
# Generate function with safe initial point at x=0
def sample_safe_fun():
while True:
fun = safeopt.sample_gp_function(kernel, bounds, noise_var, 100)
if fun(0, noise=False) > 0.5:
break
return fun
In [ ]:
# Define the objective function
fun = sample_safe_fun()
# The statistical model of our objective function
gp = GPy.models.GPRegression(x0, fun(x0), kernel, noise_var=noise_var)
# The optimization routine
opt = safeopt.SafeOptSwarm(gp, 0., bounds=bounds, threshold=0.2)
# opt = safeopt.SafeOpt(gp, parameter_set, 0., lipschitz=None, threshold=0.2)
In [ ]:
def plot_gp():
# Plot the GP
opt.plot(1000)
# Plot the true function
plt.plot(parameter_set, fun(parameter_set, noise=False), color='C2', alpha=0.3)
plot_gp()
In [ ]:
# Obtain next query point
x_next = opt.optimize()
# Get a measurement from the real system
y_meas = fun(x_next)
# Add this to the GP model
opt.add_new_data_point(x_next, y_meas)
plot_gp()
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]: