In [1]:
%pylab inline
In [2]:
from imaginglss import DECALS
decals = DECALS('/global/homes/y/yfeng1/m779/yfeng1/imaginglss/dr2.conf.py')
In [3]:
from imaginglss.utils import mpl_aea
reload(mpl_aea)
Out[3]:
In [4]:
import h5py
import kdcount
In [5]:
from kdcount import sphere
from kdcount import correlate
reload(correlate)
reload(sphere)
Out[5]:
In [6]:
CDR_LRG = h5py.File('/global/homes/y/yfeng1/source/imaginglss/nersc/CDR_LRG.hdf5', 'r')
CDR_LRGR = h5py.File('/global/homes/y/yfeng1/source/imaginglss/nersc/CDR_LRG-RANDOM.hdf5', 'r')
In [7]:
LSS_LRG = h5py.File('/global/homes/y/yfeng1/source/imaginglss/nersc/LSS_LRG.hdf5', 'r')
LSS_LRGR = h5py.File('/global/homes/y/yfeng1/source/imaginglss/nersc/LSS_LRG-RANDOM.hdf5', 'r')
In [8]:
LRG = h5py.File('/global/homes/y/yfeng1/source/imaginglss/nersc/LRG.hdf5', 'r')
LRGR = h5py.File('/global/homes/y/yfeng1/source/imaginglss/nersc/LRG-RANDOM.hdf5', 'r')
In [9]:
ELG = h5py.File('/global/homes/y/yfeng1/source/imaginglss/nersc/ELG.hdf5', 'r')
ELGR = h5py.File('/global/homes/y/yfeng1/source/imaginglss/nersc/ELG-RANDOM.hdf5', 'r')
In [10]:
CDR_ELG = h5py.File('/global/homes/y/yfeng1/source/imaginglss/nersc/CDR_ELG.hdf5', 'r')
CDR_ELGR = h5py.File('/global/homes/y/yfeng1/source/imaginglss/nersc/CDR_ELG-RANDOM.hdf5', 'r')
In [11]:
LSS_ELG = h5py.File('/global/homes/y/yfeng1/source/imaginglss/nersc/LSS_ELG.hdf5', 'r')
LSS_ELGR = h5py.File('/global/homes/y/yfeng1/source/imaginglss/nersc/LSS_ELG-RANDOM.hdf5', 'r')
In [12]:
QSO = h5py.File('/global/homes/y/yfeng1/source/imaginglss/nersc/QSO.hdf5', 'r')
QSOR = h5py.File('/global/homes/y/yfeng1/source/imaginglss/nersc/QSO-RANDOM.hdf5', 'r')
In [13]:
CDR_QSO = h5py.File('/global/homes/y/yfeng1/source/imaginglss/nersc/CDR_QSO.hdf5', 'r')
CDR_QSOR = h5py.File('/global/homes/y/yfeng1/source/imaginglss/nersc/CDR_QSO-RANDOM.hdf5', 'r')
In [14]:
LSS_QSO = h5py.File('/global/homes/y/yfeng1/source/imaginglss/nersc/LSS_QSO.hdf5', 'r')
LSS_QSOR = h5py.File('/global/homes/y/yfeng1/source/imaginglss/nersc/LSS_QSO-RANDOM.hdf5', 'r')
In [15]:
from imaginglss.model.dataproduct import bands
In [16]:
print bands
In [52]:
def readdata(h5file, completeness, subsample):
RA = h5file['RA'][:]
DEC = h5file['DEC'][:]
FC = h5file['COMPLETENESS'][:]
v = h5file['TYCHO_VETO']['BOSS_DR9'][:]
mask = ~v & (FC >= completeness)
# if 'CONFIDENCE' in h5file:
# CONFIDENCE = h5file['CONFIDENCE'][:]
# mask &= CONFIDENCE[:, 1] > 5
# mask &= CONFIDENCE[:, 2] > 5
# mask &= CONFIDENCE[:, 4] > 3
print len(RA), mask.sum()
print nanmin(22.5 - 2.5 * log10(3 * h5file['INTRINSIC_NOISELEVEL'][:, 2][mask]))
print nanmin(22.5 - 2.5 * log10(3 * h5file['INTRINSIC_NOISELEVEL'][:, 2]))
return RA[mask][::subsample], DEC[mask][::subsample]
def acorr(data, random, completeness, subsample):
data = readdata(data, completeness, subsample)
random = readdata(random, completeness, subsample)
data = sphere.points(data[0], data[1])
random = sphere.points(random[0], random[1])
abin = sphere.AngularBinning(logspace(-3, 0, 16, endpoint=True))
print len(data), len(random)
DD = correlate.paircount(data, data, abin, np=8)
DR = correlate.paircount(data, random, abin, np=8)
RR = correlate.paircount(random, random, abin, np=8)
r = 1. * len(data) / len(random)
return abin, 1.0 * DD.sum1, 1.0 * DR.sum1 * r, 1.0 * RR.sum1 * (r * r)
In [53]:
print readdata(LSS_QSO, 1, 1)
In [54]:
print readdata(QSO, 1, 1)
In [19]:
xi_LRGsim = numpy.fromstring(
""" 0.0059 1.3333128 1.3339293 0.0066935
0.0082 0.7937082 0.7941341 0.0063048
0.0114 0.5210123 0.5213102 0.0046585
0.0159 0.3251247 0.3249088 0.0028975
0.0222 0.1872699 0.1874814 0.0025432
0.0309 0.1099219 0.1098727 0.0013177
0.0430 0.0710673 0.0711660 0.0010544
0.0599 0.0553864 0.0553852 0.0007638
0.0834 0.0449320 0.0449386 0.0005066
0.1162 0.0374823 0.0375749 0.0006080
0.1618 0.0302715 0.0302595 0.0004080
0.2253 0.0231022 0.0230803 0.0004153
0.3138 0.0166624 0.0166872 0.0003718
0.4370 0.0117605 0.0117686 0.0002519
0.6085 0.0077813 0.0077688 0.0002083
0.8474 0.0045778 0.0045572 0.0001926
""", sep=' ').reshape(-1, 4).T
In [20]:
xi_ELGsim = numpy.fromstring(
""" 0.0059 0.0618821 0.0619034 0.0010241
0.0082 0.0255468 0.0256541 0.0010897
0.0114 0.0194393 0.0194185 0.0004137
0.0159 0.0168435 0.0168256 0.0005362
0.0222 0.0170369 0.0170354 0.0003401
0.0309 0.0178402 0.0178283 0.0002898
0.0430 0.0169437 0.0169424 0.0001548
0.0599 0.0146951 0.0146951 0.0001200
0.0834 0.0118795 0.0118697 0.0000833
0.1162 0.0093799 0.0093856 0.0000966
0.1618 0.0069754 0.0069720 0.0000785
0.2253 0.0049743 0.0049652 0.0000645
0.3138 0.0034435 0.0034394 0.0000554
0.4370 0.0021931 0.0021899 0.0000463
0.6085 0.0012434 0.0012403 0.0000511
0.8474 0.0006279 0.0006284 0.0000397
""", sep=' ').reshape(-1, 4).T
In [21]:
xi_QSOsim = numpy.fromstring(
""" 0.0059 0.0172651 0.0173093 0.0058842
0.0082 -0.0000735 0.0005288 0.0084870
0.0114 0.0090166 0.0097537 0.0057657
0.0159 0.0123315 0.0121035 0.0037471
0.0222 0.0119125 0.0122433 0.0033194
0.0309 0.0095169 0.0093196 0.0022516
0.0430 0.0102863 0.0105746 0.0015901
0.0599 0.0099424 0.0098718 0.0009474
0.0834 0.0074437 0.0074153 0.0008298
0.1162 0.0055929 0.0057222 0.0007914
0.1618 0.0043447 0.0043344 0.0003325
0.2253 0.0028906 0.0028863 0.0002219
0.3138 0.0018112 0.0018252 0.0002027
0.4370 0.0012336 0.0012337 0.0001401
0.6085 0.0004966 0.0004931 0.0001145
0.8474 0.0002425 0.0002461 0.0000798
""", sep=' ').reshape(-1, 4).T
In [22]:
abin, CDR_LRG_DD, CDR_LRG_DR, CDR_LRG_RR = acorr(CDR_LRG, CDR_LRGR, 1.0, 1)
In [23]:
abin, LSS_LRG_DD, LSS_LRG_DR, LSS_LRG_RR = acorr(LSS_LRG, LSS_LRGR, 1.0, 1)
In [24]:
abin, LRG_DD, LRG_DR, LRG_RR = acorr(LRG, LRGR, 1.0, 1)
In [25]:
plot(abin.angular_centers, (LRG_DD - 2 * LRG_DR + LRG_RR) / LRG_RR, label='FDR_LRG')
plot(abin.angular_centers, (CDR_LRG_DD - 2 * CDR_LRG_DR + CDR_LRG_RR) / CDR_LRG_RR, label='CDR_LRG')
plot(abin.angular_centers, (LSS_LRG_DD - 2 * LSS_LRG_DR + LSS_LRG_RR) / LSS_LRG_RR, label='LSS_LRG')
plot(xi_LRGsim[0], xi_LRGsim[1], 'x', label='Simulation LRG')
xlabel('theta')
ylabel('(DD - 2 DR + RR) / RR')
legend()
ylim(8e-3, 20)
loglog()
Out[25]:
In [26]:
abin, ELG_DD, ELG_DR, ELG_RR = acorr(ELG, ELGR, 1.0, 1)
In [27]:
abin, CDR_ELG_DD, CDR_ELG_DR, CDR_ELG_RR = acorr(CDR_ELG, CDR_ELGR, 1.0, 1)
In [28]:
abin, LSS_ELG_DD, LSS_ELG_DR, LSS_ELG_RR = acorr(LSS_ELG, LSS_ELGR, 1.0, 1)
In [29]:
plot(abin.angular_centers, (ELG_DD - 2 * ELG_DR + ELG_RR) / ELG_RR, label='FDR ELG')
plot(abin.angular_centers, (CDR_ELG_DD - 2 * CDR_ELG_DR + CDR_ELG_RR) / CDR_ELG_RR, label='CDR ELG')
plot(abin.angular_centers, (LSS_ELG_DD - 2 * LSS_ELG_DR + LSS_ELG_RR) / LSS_ELG_RR, label='LSS ELG')
plot(xi_ELGsim[0], xi_ELGsim[1], 'x', label='Simulation')
xlabel('theta')
ylabel('(DD - 2 DR + RR) / RR')
legend()
xlim(1e-2, 1)
ylim(8e-3, 0.1)
loglog()
Out[29]:
In [30]:
abin, CDR_QSO_DD, CDR_QSO_DR, CDR_QSO_RR = acorr(CDR_QSO, CDR_QSOR, 1.0, 1)
In [31]:
abin, QSO_DD, QSO_DR, QSO_RR = acorr(QSO, QSOR, 1.0, 1)
In [32]:
abin, LSS_QSO_DD, LSS_QSO_DR, LSS_QSO_RR = acorr(LSS_QSO, LSS_QSOR, 1.0, 1)
In [33]:
plot(abin.angular_centers, (QSO_DD - 2 * QSO_DR + QSO_RR) / QSO_RR, label='FDR QSO')
plot(abin.angular_centers, (CDR_QSO_DD - 2 * CDR_QSO_DR + CDR_QSO_RR) / CDR_QSO_RR, label='CDR QSO')
plot(abin.angular_centers, (LSS_QSO_DD - 2 * LSS_QSO_DR + LSS_QSO_RR) / LSS_QSO_RR, label='LSS QSO')
plot(xi_QSOsim[0], xi_QSOsim[1], 'x', label='Simulation')
xlabel('theta')
ylabel('(DD - 2 DR + RR) / RR')
xlim(1e-2, 1)
ylim(1e-3, 10)
legend()
loglog()
Out[33]:
In [34]:
reload(mpl_aea)
Out[34]:
In [35]:
ax = subplot(111, projection='aea')
ra, dec = ELGR['RA'][::1], ELGR['DEC'][::1]
v = ELGR['TYCHO_VETO']['BOSS_DR9'][:]
#_ = hist2d(ra, dec, bins=(200, 200)
ax.histmap(ra[v], dec[v], perarea=False, nside=128, range=((100, 400), (-10, 20)), vmin=0)
ax.set_xlim(100, 400)
ax.set_ylim(-10, 20)
ax.set_parallels(-20, 20)
ax.grid()
colorbar()
Out[35]:
In [36]:
ax = subplot(111, projection='aea')
ra, dec = ELGR['RA'][::1], ELGR['DEC'][::1]
v = ELGR['TYCHO_VETO']['BOSS_DR9'][:]
#_ = hist2d(ra, dec, bins=(200, 200)
ax.histmap(ra[v], dec[v], perarea=False, nside=128, range=((100, 400), (-10, 20)), vmin=0)
ax.set_xlim(100, 400)
ax.set_ylim(-10, 20)
ax.set_parallels(-20, 20)
ax.grid()
colorbar()
Out[36]:
In [37]:
ax = subplot(111, projection='aea')
ra, dec = LSS_ELGR['RA'][::1], LSS_ELGR['DEC'][::1]
v = LSS_ELGR['COMPLETENESS'][:] >= 0
#_ = hist2d(ra, dec, bins=(200, 200)
ax.histmap(ra[v], dec[v], perarea=False, nside=128, range=((320, 360), (-2, 2)), vmin=0)
ax.set_xlim(320, 360)
ax.set_ylim(-2, 2)
ax.set_parallels(-20, 20)
ax.grid()
colorbar()
Out[37]:
In [38]:
ax = subplot(111, projection='aea')
ra, dec = LSS_ELGR['RA'][::1], LSS_ELGR['DEC'][::1]
v = LSS_ELGR['COMPLETENESS'][:] ==1
#_ = hist2d(ra, dec, bins=(200, 200)
ax.histmap(ra[v], dec[v], perarea=False, nside=128, range=((320, 360), (-2, 2)), vmin=0)
ax.set_xlim(320, 360)
ax.set_ylim(-2, 2)
ax.set_parallels(-20, 20)
ax.grid()
colorbar()
Out[38]:
In [39]:
def number_density(ax, cat):
ra, dec = readdata(cat, 1.0, 1.0)
#_ = hist2d(ra, dec, bins=(200, 200)
ax.histmap(ra, dec, perarea=True, nside=64)
ax.set_xlim(100, 400)
ax.set_ylim(-10, 45)
ax.set_parallels(-20, 20)
ax.grid()
In [40]:
figure(figsize=(9, 6))
ax = subplot(231, projection='aea')
number_density(ax, LSS_QSOR)
colorbar()
ax.set_title('QSOR LSS')
ax = subplot(232, projection='aea')
number_density(ax, QSOR)
colorbar()
ax.set_title('QSOR FDR')
ax = subplot(233, projection='aea')
number_density(ax, CDR_QSOR)
colorbar()
ax.set_title('QSOR CDR')
ax = subplot(234, projection='aea')
number_density(ax, LSS_QSO)
ax.set_title('QSO LSS')
colorbar()
ax = subplot(235, projection='aea')
number_density(ax, QSO)
ax.set_title('QSO FDR')
colorbar()
ax = subplot(236, projection='aea')
number_density(ax, CDR_QSO)
ax.set_title('QSO CDR')
colorbar()
Out[40]:
In [41]:
figure(figsize=(9, 6))
ax = subplot(231, projection='aea')
number_density(ax, LSS_LRGR)
colorbar()
ax.set_title('LRGR LSS')
ax = subplot(232, projection='aea')
number_density(ax, LRGR)
colorbar()
ax.set_title('LRGR FDR')
ax = subplot(233, projection='aea')
number_density(ax, CDR_LRGR)
colorbar()
ax.set_title('LRGR CDR')
ax = subplot(234, projection='aea')
number_density(ax, LSS_LRG)
ax.set_title('LRG LSS')
colorbar()
ax = subplot(235, projection='aea')
number_density(ax, LRG)
ax.set_title('LRG FDR')
colorbar()
ax = subplot(236, projection='aea')
number_density(ax, CDR_LRG)
ax.set_title('LRG CDR')
colorbar()
Out[41]:
In [42]:
figure(figsize=(9, 6))
ax = subplot(231, projection='aea')
number_density(ax, LSS_ELGR)
colorbar()
ax.set_title('ELGR LSS')
ax = subplot(232, projection='aea')
number_density(ax, ELGR)
colorbar()
ax.set_title('ELGR FDR')
ax = subplot(233, projection='aea')
number_density(ax, CDR_ELGR)
colorbar()
ax.set_title('ELGR CDR')
ax = subplot(234, projection='aea')
number_density(ax, LSS_ELG)
ax.set_title('ELG LSS')
colorbar()
ax = subplot(235, projection='aea')
number_density(ax, ELG)
ax.set_title('ELG FDR')
colorbar()
ax = subplot(236, projection='aea')
number_density(ax, CDR_ELG)
ax.set_title('ELG CDR')
colorbar()
Out[42]:
In [43]:
RAd, DECd = loadtxt('/global/homes/y/yfeng1/source/imaginglss/nersc/ForYu/LRG_d.rdz', usecols=(0,1), unpack=True)
In [44]:
RAr, DECr = loadtxt('/global/homes/y/yfeng1/source/imaginglss/nersc/ForYu/LRG_r.rdz', usecols=(0,1), unpack=True)
In [45]:
data = sphere.points(RAd, DECd)
random = sphere.points(RAr, DECr)
abin = sphere.AngularBinning(logspace(-3, 0, 16, endpoint=True))
print len(data), len(random)
DD = correlate.paircount(data, data, abin, np=8)
DR = correlate.paircount(data, random, abin, np=8)
RR = correlate.paircount(random, random, abin, np=8)
In [46]:
!cat /global/homes/y/yfeng1/source/imaginglss/nersc/ForYu/LRG.wt
In [ ]:
In [47]:
r = 1.0 * len(data) / len(random)
plot(abin.angular_centers,
(1.0 * DD.sum1 - 2 * r * DR.sum1 + r ** 2 * RR.sum1) / (r ** 2 * RR.sum1),
'+',
label='Ellie data')
plot(abin.angular_centers,
(CDR_LRG_DD - 2 * CDR_LRG_DR + CDR_LRG_RR) / CDR_LRG_RR,
'+',
label='CDR_LRG data no confidence',
)
r, w = loadtxt('/global/homes/y/yfeng1/source/imaginglss/nersc/ForYu/LRG.wt', usecols=(0, 1), unpack=True)
plot(r, w, 'x', label='Martin code Ellie data')
plot(xi_LRGsim[0], xi_LRGsim[1], label='simulation')
plot(abin.angular_centers, (LRG_DD - 2 * LRG_DR + LRG_RR) / LRG_RR, 'o', label='FDR_LRG data')
xlabel('theta')
ylabel('(DD - 2 DR + RR) / RR')
legend(loc='lower left')
loglog()
Out[47]:
In [48]:
_ = hist2d(RAd, DECd, bins=(400, 400))
print len(RAd)
In [188]:
RA_CDR_LRGd, DEC_CDR_LRGd = readdata(CDR_LRG, 1, 1)
print len(RA_CDR_LRGd)
_ = hist2d(RA_CDR_LRGd, DEC_CDR_LRGd, bins=(400, 400))
In [187]:
RA_CDR_LRGr, DEC_CDR_LRGr = readdata(CDR_LRGR, 1, 1)
print len(RA_CDR_LRGr)
_ = hist2d(RA_CDR_LRGr, DEC_CDR_LRGr, bins=(400, 400))
In [ ]:
In [175]:
_ = hist2d(RAr, DECr, bins=(400, 400))
In [59]:
t, w= loadtxt('/global/homes/y/yfeng1/m779/yfeng1/imaginglss/dr2lss/ELG-wtheta.txt', unpack=True)
plot(t, w)
t, w= loadtxt('/global/homes/y/yfeng1/m779/yfeng1/imaginglss/dr2lss/LRG-wtheta.txt', unpack=True)
plot(t, w)
t, w= loadtxt('/global/homes/y/yfeng1/m779/yfeng1/imaginglss/dr2lss/QSO-wtheta.txt', unpack=True)
plot(t, w)
loglog()
Out[59]:
In [64]:
t, w= loadtxt('/global/homes/y/yfeng1/m779/yfeng1/imaginglss/dr2lss/FDRPP_ELG-wtheta.txt', unpack=True)
plot(t, w)
t, w= loadtxt('/global/homes/y/yfeng1/m779/yfeng1/imaginglss/dr2lss/FDRPP_LRG-wtheta.txt', unpack=True)
plot(t, w)
#t, w= loadtxt('/global/homes/y/yfeng1/m779/yfeng1/imaginglss/dr2lss/FDRPP_QSO-wtheta.txt', unpack=True)
plot(t, w)
loglog()
Out[64]:
In [77]:
t, w= loadtxt('/global/homes/y/yfeng1/m779/yfeng1/imaginglss/dr2lss/FDRPP_LRG-wtheta.txt', unpack=True)
plot(t, w, label='FDRPP')
t, w= loadtxt('/global/homes/y/yfeng1/m779/yfeng1/imaginglss/dr2lss/FDRP_LRG-wtheta.txt', unpack=True)
plot(t, w, label='FDRP')
t, w= loadtxt('/global/homes/y/yfeng1/m779/yfeng1/imaginglss/dr2lss/LRG-wtheta.txt', unpack=True)
plot(t, w, label='FDR')
loglog()
title('LRG')
legend()
xlabel('theta')
ylabel('w(theta)')
Out[77]:
In [78]:
t, w= loadtxt('/global/homes/y/yfeng1/m779/yfeng1/imaginglss/dr2lss/FDRPP_ELG-wtheta.txt', unpack=True)
plot(t, w, label='FDRPP')
t, w= loadtxt('/global/homes/y/yfeng1/m779/yfeng1/imaginglss/dr2lss/FDRP_ELG-wtheta.txt', unpack=True)
plot(t, w, label='FDRP')
t, w= loadtxt('/global/homes/y/yfeng1/m779/yfeng1/imaginglss/dr2lss/ELG-wtheta.txt', unpack=True)
plot(t, w, label='FDR')
loglog()
title('ELG')
legend()
xlabel('theta')
ylabel('w(theta)')
Out[78]:
In [79]:
t, w= loadtxt('/global/homes/y/yfeng1/m779/yfeng1/imaginglss/dr2lss/FDRPP_QSO-wtheta.txt', unpack=True)
plot(t, w, label='FDRPP')
t, w= loadtxt('/global/homes/y/yfeng1/m779/yfeng1/imaginglss/dr2lss/FDRP_QSO-wtheta.txt', unpack=True)
plot(t, w, label='FDRP')
t, w= loadtxt('/global/homes/y/yfeng1/m779/yfeng1/imaginglss/dr2lss/QSO-wtheta.txt', unpack=True)
plot(t, w, label='FDR')
loglog()
title('QSO')
legend()
xlabel('theta')
ylabel('w(theta)')
Out[79]:
In [ ]: