In [1]:
%matplotlib inline
import pandas as pd
import seaborn as sns
In [8]:
sns.set_style('whitegrid')
sns.set_context('poster')
In [16]:
data = pd.read_csv('results.csv')
In [17]:
data["latency (μs)"] = data["latency (ns)"] / 1000
In [9]:
g = sns.barplot("clients", "latency (μs)", data=data, palette="Blues_d")
g.set_title("RTT Message Latency to Single Server (total linearizeability)")
g.set_ylabel("mean latency (μs)")
g.set_xlabel("# concurrent clients")
Out[9]:
In [18]:
data = data.sample(frac=0.1)
In [28]:
data = data[data["latency (μs)"] < 5000.0]
In [29]:
data.describe()
Out[29]:
In [33]:
g = sns.boxplot("clients", "latency (μs)", data=data, palette="Blues_d")
In [10]:
data = pd.read_csv('throughput.csv')
In [11]:
data.describe()
Out[11]:
In [12]:
data['throughput (msg/sec)'] = data['messages'] / (data['latency (ns)'] / 1000000000)
In [15]:
g = sns.barplot("clients", "throughput (msg/sec)", data=data, palette="Blues_d")
g.set_title("Write Throughput to Single Server (total linearizeability)")
g.set_ylabel("throughput (msg/sec)")
g.set_xlabel("# concurrent clients")
Out[15]: