In [1]:
%matplotlib inline
import numpy as np
from scipy.misc import imread
from plt_utils import * # see https://github.com/bbabenko/plt_utils
from image_utils import *
In [2]:
# img = np.array(data.lena()).astype('uint8')
duck_img = imread('ducks.jpg')
synth_img = np.reshape(np.arange(20), (4,5)).astype('float32')
In [3]:
imshow(synth_img)
In [4]:
imshow(duck_img)
The method gblur
is a convenience wrapper around cv2.GaussianBlur
.
In [5]:
imshow(gblur(duck_img, 5))
In [6]:
imshow(gblur(duck_img.mean(-1), 5))
The method rgb_convert
is a convenience wrapper around cv2.cvtColor
.
In [7]:
plt.figure(figsize=(10,10))
imshow(rgb_convert(duck_img, colorspace=COLORSPACE.hsv), split=True)
In [8]:
plt.figure(figsize=(10,10))
imshow(rgb_convert(duck_img, colorspace=COLORSPACE.luv), split=True)
In [9]:
plt.figure(figsize=(10,10))
imshow(rgb_convert(duck_img, colorspace=COLORSPACE.gray)
Convenience wrapper around cv2.copyMakeBorder
and a method to crop a patch from an image.
In [ ]:
imshow(pad(duck_img, (100,150), (200,350)))
In [10]:
imshow(pad(synth_img, (1,2), (2,1)))
In [11]:
cropped_duck = crop(duck_img, (-20, -30, 300, 300))
imshow(cropped_duck)
In [12]:
cropped_synth = crop(synth_img, (-2, -3, 5, 5))
imshow(cropped_synth)
In [13]:
# create a circle image
from skimage.draw import circle
img = np.zeros((51, 51), dtype=np.uint8)
rr, cc = circle(25, 25, 20)
img[rr, cc] = 1
mag, orient = gradient(img)
imshow(img)
imshow(mag)
imshow(orient)
Convenience wrapper around cv2.resize
.
In [14]:
imshow(resize(duck_img, 2000, 1000))
imshow(resize(duck_img, 50, 100))
imshow(resize(duck_img.transpose(1,0,2), 100, 50))
imshow(resize(duck_img.transpose(1,0,2), 50, 100))
imshow(resize(duck_img, 100, 50, keep_aspect_ratio=False))
imshow(resize(duck_img, 50, 100, keep_aspect_ratio=False))