In [1]:
# https://github.com/pymc-devs/pymc3/blob/master/docs/source/notebooks/updating_priors.ipynb
In [ ]:
In [1]:
# pymc3.distributions.DensityDist?
In [2]:
import matplotlib.pyplot as plt
import matplotlib as mpl
from pymc3 import Model, Normal, Slice
from pymc3 import sample
from pymc3 import traceplot
from pymc3.distributions import Interpolated
from theano import as_op
import theano.tensor as tt
import numpy as np
from scipy import stats
%matplotlib inline
%load_ext version_information
%version_information pymc3
Out[2]:
In [5]:
from sklearn.neighbors.kde import KernelDensity
import numpy as np
X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
kde = KernelDensity(kernel='gaussian', bandwidth=0.2).fit(X)
kde.score_samples(X)
plt.scatter(X[:,0], X[:,1])
Out[5]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [3]:
# Initialize random number generator
np.random.seed(123)
# True parameter values
alpha_true = 5
beta0_true = 7
beta1_true = 13
# Size of dataset
size = 100
# Predictor variable
X1 = np.random.randn(size)
X2 = np.random.randn(size) * 0.2
# Simulate outcome variable
Y = alpha_true + beta0_true * X1 + beta1_true * X2 + np.random.randn(size)
In [4]:
basic_model = Model()
with basic_model:
# Priors for unknown model parameters
alpha = Normal('alpha', mu=0, sd=1)
beta0 = Normal('beta0', mu=12, sd=1)
beta1 = Normal('beta1', mu=18, sd=1)
# Expected value of outcome
mu = alpha + beta0 * X1 + beta1 * X2
# Likelihood (sampling distribution) of observations
Y_obs = Normal('Y_obs', mu=mu, sd=1, observed=Y)
# draw 1000 posterior samples
trace = sample(1000)
In [5]:
traceplot(trace);
In order to update our beliefs about the parameters, we use the posterior distributions, which will be used as the prior distributions for the next inference. The data used for each inference iteration has to be independent from the previous iterations, otherwise the same (possibly wrong) belief is injected over and over in the system, amplifying the errors and misleading the inference. By ensuring the data is independent, the system should converge to the true parameter values.
Because we draw samples from the posterior distribution (shown on the right in the figure above), we need to estimate their probability density (shown on the left in the figure above). Kernel density estimation (KDE) is a way to achieve this, and we will use this technique here. In any case, it is an empirical distribution that cannot be expressed analytically. Fortunately PyMC3 provides a way to use custom distributions, via Interpolated class.
In [6]:
def from_posterior(param, samples):
smin, smax = np.min(samples), np.max(samples)
width = smax - smin
x = np.linspace(smin, smax, 100)
y = stats.gaussian_kde(samples)(x)
# what was never sampled should have a small probability but not 0,
# so we'll extend the domain and use linear approximation of density on it
x = np.concatenate([[x[0] - 3 * width], x, [x[-1] + 3 * width]])
y = np.concatenate([[0], y, [0]])
return Interpolated(param, x, y)
Now we just need to generate more data and build our Bayesian model so that the prior distributions for the current iteration are the posterior distributions from the previous iteration. It is still possible to continue using NUTS sampling method because Interpolated class implements calculation of gradients that are necessary for Hamiltonian Monte Carlo samplers.
In [7]:
traces = [trace]
In [8]:
for _ in range(10):
# generate more data
X1 = np.random.randn(size)
X2 = np.random.randn(size) * 0.2
Y = alpha_true + beta0_true * X1 + beta1_true * X2 + np.random.randn(size)
model = Model()
with model:
# Priors are posteriors from previous iteration
alpha = from_posterior('alpha', trace['alpha'])
beta0 = from_posterior('beta0', trace['beta0'])
beta1 = from_posterior('beta1', trace['beta1'])
# Expected value of outcome
mu = alpha + beta0 * X1 + beta1 * X2
# Likelihood (sampling distribution) of observations
Y_obs = Normal('Y_obs', mu=mu, sd=1, observed=Y)
# draw 10000 posterior samples
trace = sample(1000)
traces.append(trace)
In [9]:
print('Posterior distributions after ' + str(len(traces)) + ' iterations.')
cmap = mpl.cm.autumn
for param in ['alpha', 'beta0', 'beta1']:
plt.figure(figsize=(8, 2))
for update_i, trace in enumerate(traces):
samples = trace[param]
smin, smax = np.min(samples), np.max(samples)
x = np.linspace(smin, smax, 100)
y = stats.gaussian_kde(samples)(x)
plt.plot(x, y, color=cmap(1 - update_i / len(traces)))
plt.axvline({'alpha': alpha_true, 'beta0': beta0_true, 'beta1': beta1_true}[param], c='k')
plt.ylabel('Frequency')
plt.title(param)
plt.show()
You can re-execute the last two cells to generate more updates.
What is interesting to note is that the posterior distributions for our parameters tend to get centered on their true value (vertical lines), and the distribution gets thiner and thiner. This means that we get more confident each time, and the (false) belief we had at the beginning gets flushed away by the new data we incorporate.
In [10]:
for _ in range(10):
# generate more data
X1 = np.random.randn(size)
X2 = np.random.randn(size) * 0.2
Y = alpha_true + beta0_true * X1 + beta1_true * X2 + np.random.randn(size)
model = Model()
with model:
# Priors are posteriors from previous iteration
alpha = from_posterior('alpha', trace['alpha'])
beta0 = from_posterior('beta0', trace['beta0'])
beta1 = from_posterior('beta1', trace['beta1'])
# Expected value of outcome
mu = alpha + beta0 * X1 + beta1 * X2
# Likelihood (sampling distribution) of observations
Y_obs = Normal('Y_obs', mu=mu, sd=1, observed=Y)
# draw 10000 posterior samples
trace = sample(1000)
traces.append(trace)
In [11]:
print('Posterior distributions after ' + str(len(traces)) + ' iterations.')
cmap = mpl.cm.autumn
for param in ['alpha', 'beta0', 'beta1']:
plt.figure(figsize=(8, 2))
for update_i, trace in enumerate(traces):
samples = trace[param]
smin, smax = np.min(samples), np.max(samples)
x = np.linspace(smin, smax, 100)
y = stats.gaussian_kde(samples)(x)
plt.plot(x, y, color=cmap(1 - update_i / len(traces)))
plt.axvline({'alpha': alpha_true, 'beta0': beta0_true, 'beta1': beta1_true}[param], c='k')
plt.ylabel('Frequency')
plt.title(param)
plt.show()
In [12]:
for _ in range(10):
# generate more data
X1 = np.random.randn(size)
X2 = np.random.randn(size) * 0.2
Y = alpha_true + beta0_true * X1 + beta1_true * X2 + np.random.randn(size)
model = Model()
with model:
# Priors are posteriors from previous iteration
alpha = from_posterior('alpha', trace['alpha'])
beta0 = from_posterior('beta0', trace['beta0'])
beta1 = from_posterior('beta1', trace['beta1'])
# Expected value of outcome
mu = alpha + beta0 * X1 + beta1 * X2
# Likelihood (sampling distribution) of observations
Y_obs = Normal('Y_obs', mu=mu, sd=1, observed=Y)
# draw 10000 posterior samples
trace = sample(1000)
traces.append(trace)
In [13]:
print('Posterior distributions after ' + str(len(traces)) + ' iterations.')
cmap = mpl.cm.autumn
for param in ['alpha', 'beta0', 'beta1']:
plt.figure(figsize=(8, 2))
for update_i, trace in enumerate(traces):
samples = trace[param]
smin, smax = np.min(samples), np.max(samples)
x = np.linspace(smin, smax, 100)
y = stats.gaussian_kde(samples)(x)
plt.plot(x, y, color=cmap(1 - update_i / len(traces)))
plt.axvline({'alpha': alpha_true, 'beta0': beta0_true, 'beta1': beta1_true}[param], c='k')
plt.ylabel('Frequency')
plt.title(param)
plt.show()
In [ ]: