Introduction to Machine Learning with scikit-learn

Lab 5: Model evaluation and selection

In this lab, we will apply a few model evaluation metrics we've seen in the lecture.


In [29]:
%matplotlib inline
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)

As always, we need to start with some data. Let's first generate a set of outputs $y$ and predicted outputs $\hat{y}$ to illustrate a few typical cases.


In [44]:
from sklearn.metrics import confusion_matrix
y_true = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
y_pred = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0]
cnf_matrix = confusion_matrix(y_true, y_pred)
print(cnf_matrix)


[[12  1]
 [ 0  2]]

Now let's define a function that will display the confusion matrix. The following is inspired from this example.


In [47]:
import itertools
import numpy as np
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix

def plot_confusion_matrix(cm, classes,
                          title='Confusion matrix',
                          cmap=plt.cm.Blues):
    """
    This function prints and plots the confusion matrix.
    Normalization can be applied by setting `normalize=True`.
    """
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes)
    plt.yticks(tick_marks, classes)

    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')

In [48]:
plt.figure()
plot_confusion_matrix(cnf_matrix, ['0', '1'])



In [ ]: