J.R. Johansson and P.D. Nation
For more information about QuTiP see http://qutip.org
In [441]:
import matplotlib.pyplot as plt
import numpy as np
from qutip import *
%matplotlib inline
In [442]:
def qubit_integrate(epsilon, delta, g1, g2, solver):
H = epsilon / 2.0 * sigmaz() + delta / 2.0 * sigmax()
# collapse operators
c_ops = []
if g1 > 0.0:
c_ops.append(np.sqrt(g1) * sigmam())
if g2 > 0.0:
c_ops.append(np.sqrt(g2) * sigmaz())
e_ops = [sigmax(), sigmay(), sigmaz()]
if solver == "me":
output = mesolve(H, psi0, tlist, c_ops, e_ops)
elif solver == "es":
output = essolve(H, psi0, tlist, c_ops, e_ops)
elif solver == "mc":
ntraj = 250
output = mcsolve(H, psi0, tlist, ntraj, c_ops, [sigmax(), sigmay(), sigmaz()])
else:
raise ValueError("unknown solver")
return output.expect[0], output.expect[1], output.expect[2]
In [450]:
def state(expect_x, expect_y, expect_z):
psi = expect_x * sigmax() + expect_y * sigmay() + expect_z * sigmaz()
return psi.eigenstates()[1][1]
In [451]:
epsilon = 0.0 * 2 * np.pi # cavity frequency
delta = 1.0 * 2 * np.pi # atom frequency
g2 = 0.15
g1 = 0.00
# intial state
#a = 0.5
#psi0 = (a * basis(2,0) + (1-a)*basis(2,1))/(np.sqrt(a**2 + (1-a)**2))
#psi0 = (a * fock_dm(2,0) + (1-a)*fock_dm(2,1))/(np.sqrt(a**2 + (1-a)**2))
#psi0 = Qobj(psi0.diag())
psi0 = state(0, 0, 1)
tlist = np.linspace(0,5,200)
# analytics
sx_analytic = np.zeros(shape(tlist))
sy_analytic = -np.sin(2*np.pi*tlist) * np.exp(-tlist * g2)
sz_analytic = np.cos(2*np.pi*tlist) * np.exp(-tlist * g2)
psi0
Out[451]:
In [474]:
sx1, sy1, sz1 = qubit_integrate(epsilon, delta, g1, g2, "me")
In [453]:
fig, ax = plt.subplots(figsize=(11,6))
ax.plot(tlist, np.real(sx1), 'r')
ax.plot(tlist, np.real(sy1), 'b')
ax.plot(tlist, np.real(sz1), 'g')
#ax.plot(tlist, sx_analytic, 'r*')
#ax.plot(tlist, sy_analytic, 'g*')
#ax.plot(tlist, sz_analytic, 'g*')
ax.legend(("sx", "sy", "sz"))
ax.set_xlabel('Time')
ax.set_ylabel('expectation value');
In [454]:
def qubit_integrate(w, theta, phi, gamma1, gamma2, psi0, tlist):
# Hamiltonian
sx = sigmax()
sy = sigmay()
sz = sigmaz()
sm = sigmam()
H = w * (np.sin(theta)*np.cos(phi) * sx + np.sin(theta)*np.sin(phi) * sy + np.cos(theta)*sz)
# collapse operators
c_op_list = []
n_th = 0.5 # zero temperature
rate = gamma1 * (n_th + 1)
if rate > 0.0:
c_op_list.append(np.sqrt(rate) * sm)
rate = gamma1 * n_th
if rate > 0.0:
c_op_list.append(np.sqrt(rate) * sm.dag())
rate = gamma2
if rate > 0.0:
c_op_list.append(np.sqrt(rate) * sz)
# evolve and calculate expectation values
output = mesolve(H, psi0, tlist, c_op_list, [sx, sy, sz])
return output.expect[0], output.expect[1], output.expect[2]
In [475]:
sphere=Bloch()
sphere.vector_color = ['b', 'r', 'g']
w = 2 * np.pi # qubit angular frequency
gamma1 = 0.00 # qubit relaxation rate
gamma2 = 0.00 # qubit dephasing rate
theta = 0.50 * np.pi # qubit angle from sigma_z axis (toward sigma_x axis)
phi = 0.00 * np.pi # qubit angle from sigma_x axis (toward sigma_y axis)
tlist = np.linspace(0,0.25*w/(np.pi*4),20)
# initial state
psi0 = state(0, 0, 1)
sx, sy, sz = qubit_integrate(w, theta, phi, gamma1, gamma2, psi0, tlist)
sphere.add_points([sx,sy,sz])
sphere.add_vectors([sx[0], sy[0], sz[0]])
theta = 0.00 * np.pi # qubit angle from sigma_z axis (toward sigma_x axis)
phi = 0.00 * np.pi # qubit angle from sigma_x axis (toward sigma_y axis)
tlist = np.linspace(0,1.0*w/(np.pi*4),40)
# initial state
psi0 = state(sx[-1], sy[-1], sz[-1])
sx, sy, sz = qubit_integrate(w, theta, phi, gamma1, gamma2, psi0, tlist)
sphere.add_points([sx,sy,sz])
sphere.add_vectors([sx[0], sy[0], sz[0]])
theta = 0.50 * np.pi # qubit angle from sigma_z axis (toward sigma_x axis)
phi = 0.00 * np.pi # qubit angle from sigma_x axis (toward sigma_y axis)
tlist = np.linspace(0,0.25*w/(np.pi*4),20)
# initial state
psi0 = state(sx[-1], sy[-1], sz[-1])
sx, sy, sz = qubit_integrate(w, theta, phi, gamma1, gamma2, psi0, tlist)
sphere.add_points([sx,sy,sz])
sphere.add_vectors([sx[0], sy[0], sz[0]])
#sphere.add_vectors([np.sin(theta)*np.cos(phi), np.sin(theta)*np.sin(phi), np.cos(theta)])
sphere.show()
In [ ]:
In [159]:
from qutip.ipynbtools import version_table
version_table()
Out[159]:
In [ ]: