In [1]:
from IPython.display import HTML
HTML('<iframe src=http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data width=300 height=200></iframe>')
Out[1]:
In [3]:
# import load_iris function from datasets module
from sklearn.datasets import load_iris
# save "bunch" object containing iris dataset and its attributes
iris = load_iris()
# store feature matrix in "X"
X = iris.data
# store response vector in "y"
y = iris.target
In [4]:
# print the shapes of X and y
print X.shape
print y.shape
In [5]:
from sklearn.neighbors import KNeighborsClassifier
Step 2: "Instantiate" the "estimator"
In [6]:
knn = KNeighborsClassifier(n_neighbors=1)
In [7]:
print knn
Step 3: Fit the model with data (aka "model training")
In [8]:
knn.fit(X,y)
Out[8]:
Step 4: Predict the response for a new observation
In [9]:
knn.predict([3,5,4,2])
Out[9]:
In [10]:
X_new = [[3, 5, 4, 2], [5, 4, 3, 2]]
knn.predict(X_new)
Out[10]:
In [11]:
# instantiate the model (using the value K=5)
knn = KNeighborsClassifier(n_neighbors=5)
# fit the model with data
knn.fit(X, y)
# predict the response for new observations
knn.predict(X_new)
Out[11]:
In [12]:
# import the class
from sklearn.linear_model import LogisticRegression
# instantiate the model (using the default parameters)
logreg = LogisticRegression()
# fit the model with data
logreg.fit(X, y)
# predict the response for new observations
logreg.predict(X_new)
Out[12]:
In [13]:
from IPython.core.display import HTML
def css_styling():
styles = open("styles/custom.css", "r").read()
return HTML(styles)
css_styling()
Out[13]: