In this lab, we will use a Convolutional Neural Network to classify handwritten digits from the MNIST database. We will reshape the images to make them faster to process
Estimated Time Needed: 25 min
In [ ]:
# Import the libraries we need to use in this lab
# Using the following line code to install the torchvision library
# !conda install -y torchvision
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as dsets
import matplotlib.pylab as plt
import numpy as np
Define the function plot_channels
to plot out the kernel parameters of each channel
In [ ]:
# Define the function for plotting the channels
def plot_channels(W):
n_out = W.shape[0]
n_in = W.shape[1]
w_min = W.min().item()
w_max = W.max().item()
fig, axes = plt.subplots(n_out, n_in)
fig.subplots_adjust(hspace=0.1)
out_index = 0
in_index = 0
#plot outputs as rows inputs as columns
for ax in axes.flat:
if in_index > n_in-1:
out_index = out_index + 1
in_index = 0
ax.imshow(W[out_index, in_index, :, :], vmin=w_min, vmax=w_max, cmap='seismic')
ax.set_yticklabels([])
ax.set_xticklabels([])
in_index = in_index + 1
plt.show()
Define the function plot_parameters
to plot out the kernel parameters of each channel with Multiple outputs .
In [ ]:
# Define the function for plotting the parameters
def plot_parameters(W, number_rows=1, name="", i=0):
W = W.data[:, i, :, :]
n_filters = W.shape[0]
w_min = W.min().item()
w_max = W.max().item()
fig, axes = plt.subplots(number_rows, n_filters // number_rows)
fig.subplots_adjust(hspace=0.4)
for i, ax in enumerate(axes.flat):
if i < n_filters:
# Set the label for the sub-plot.
ax.set_xlabel("kernel:{0}".format(i + 1))
# Plot the image.
ax.imshow(W[i, :], vmin=w_min, vmax=w_max, cmap='seismic')
ax.set_xticks([])
ax.set_yticks([])
plt.suptitle(name, fontsize=10)
plt.show()
Define the function plot_activation
to plot out the activations of the Convolutional layers
In [ ]:
# Define the function for plotting the activations
def plot_activations(A, number_rows=1, name="", i=0):
A = A[0, :, :, :].detach().numpy()
n_activations = A.shape[0]
A_min = A.min().item()
A_max = A.max().item()
fig, axes = plt.subplots(number_rows, n_activations // number_rows)
fig.subplots_adjust(hspace = 0.4)
for i, ax in enumerate(axes.flat):
if i < n_activations:
# Set the label for the sub-plot.
ax.set_xlabel("activation:{0}".format(i + 1))
# Plot the image.
ax.imshow(A[i, :], vmin=A_min, vmax=A_max, cmap='seismic')
ax.set_xticks([])
ax.set_yticks([])
plt.show()
Define the function show_data
to plot out data samples as images.
In [ ]:
def show_data(data_sample):
plt.imshow(data_sample[0].numpy().reshape(IMAGE_SIZE, IMAGE_SIZE), cmap='gray')
plt.title('y = '+ str(data_sample[1].item()))
We create a transform to resize the image and convert it to a tensor .
In [ ]:
# The composer for resizeing the image
IMAGE_SIZE = 8
composed = transforms.Compose([transforms.Resize((IMAGE_SIZE, IMAGE_SIZE)), transforms.ToTensor()])
Load the training dataset by setting the parameters train
to True
. We use the transform defined above.
In [ ]:
# Make the training
train_dataset = dsets.MNIST(root='./data', train=True, download=True, transform=composed)
Load the testing dataset by setting the parameters train False
.
In [ ]:
# Make the validating
validation_dataset = dsets.MNIST(root='./data', train=False, download=True, transform=composed)
We can see the data type is long.
In [ ]:
# Show the data type for each element in dataset
train_dataset[0][1].type()
Each element in the rectangular tensor corresponds to a number representing a pixel intensity as demonstrated by the following image.
Print out the fourth label
In [ ]:
# The label for the fourth data element
train_dataset[3][1]
Plot the fourth sample
In [ ]:
# The image for the fourth data element
show_data(train_dataset[3])
The fourth sample is a "1".
Build a Convolutional Network class with two Convolutional layers and one fully connected layer. Pre-determine the size of the final output matrix. The parameters in the constructor are the number of output channels for the first and second layer.
In [ ]:
# Build the convolutional Neural Network Class
class CNN(nn.Module):
# Contructor
def __init__(self, out_1=16, out_2=32):
super(CNN, self).__init__()
self.cnn1 = nn.Conv2d(in_channels=1, out_channels=out_1, kernel_size=3, stride=1, padding=1)
self.relu1 = nn.ReLU()
self.maxpool1 = nn.MaxPool2d(kernel_size=2)
self.cnn2 = nn.Conv2d(in_channels=out_1, out_channels=out_2, kernel_size=3, stride=1, padding=1)
self.relu2 = nn.ReLU()
self.maxpool2 = nn.MaxPool2d(kernel_size=2)
self.fc1 = nn.Linear(out_2 * 2 * 2, 10)
# Prediction
def forward(self, x):
out = self.cnn1(x)
out = self.relu1(out)
out = self.maxpool1(out)
out = self.cnn2(out)
out = self.relu2(out)
out = self.maxpool2(out)
out = out.view(out.size(0), -1)
out = self.fc1(out)
return out
# Outputs in each steps
def activations(self, x):
#outputs activation this is not necessary
z1 = self.cnn1(x)
a1 = self.relu1(z1)
out = self.maxpool1(a1)
z2 = self.cnn2(out)
a2 = self.relu2(z2)
out = self.maxpool2(a2)
out = out.view(out.size(0),-1)
return z1, a1, z2, a2, out
There are 16 output channels for the first layer, and 32 output channels for the second layer
In [ ]:
# Create the model object using CNN class
model = CNN(out_1=16, out_2=32)
Plot the model parameters for the kernels before training the kernels. The kernels are initialized randomly.
In [ ]:
# Plot the parameters
plot_parameters(model.state_dict()['cnn1.weight'], number_rows=4, name="1st layer kernels before training ")
plot_parameters(model.state_dict()['cnn2.weight'], number_rows=4, name='2nd layer kernels before training' )
Define the loss function, the optimizer and the dataset loader
In [ ]:
criterion = nn.CrossEntropyLoss()
learning_rate = 0.1
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=100)
validation_loader = torch.utils.data.DataLoader(dataset=validation_dataset, batch_size=5000)
Train the model and determine validation accuracy technically test accuracy (This may take a long time)
In [ ]:
# Train the model
n_epochs = 3
loss_list = []
accuracy_list = []
N_test = len(validation_dataset)
def train_model(n_epochs):
for epoch in range(n_epochs):
for x, y in train_loader:
optimizer.zero_grad()
z = model(x)
loss = criterion(z, y)
loss.backward()
optimizer.step()
correct=0
#perform a prediction on the validation data
for x_test, y_test in validation_loader:
z = model(x_test)
_, yhat = torch.max(z.data, 1)
correct += (yhat == y_test).sum().item()
accuracy = correct / N_test
accuracy_list.append(accuracy)
loss_list.append(loss.data)
train_model(n_epochs)
Plot the loss and accuracy on the validation data:
In [ ]:
# Plot the loss and accuracy
fig, ax1 = plt.subplots()
color = 'tab:red'
ax1.plot(loss_list, color=color)
ax1.set_xlabel('epoch', color=color)
ax1.set_ylabel('total loss', color=color)
ax1.tick_params(axis='y', color=color)
ax2 = ax1.twinx()
color = 'tab:blue'
ax2.set_ylabel('accuracy', color=color)
ax2.plot( accuracy_list, color=color)
ax2.tick_params(axis='y', color=color)
fig.tight_layout()
View the results of the parameters for the Convolutional layers
In [ ]:
# Plot the channels
plot_channels(model.state_dict()['cnn1.weight'])
plot_channels(model.state_dict()['cnn2.weight'])
Consider the following sample
In [ ]:
# Show the second image
show_data(train_dataset[1])
Determine the activations
In [ ]:
# Use the CNN activations class to see the steps
out = model.activations(train_dataset[1][0].view(1, 1, IMAGE_SIZE, IMAGE_SIZE))
Plot out the first set of activations
In [ ]:
# Plot the outputs after the first CNN
plot_activations(out[0], number_rows=4, name="Output after the 1st CNN")
The image below is the result after applying the relu activation function
In [ ]:
# Plot the outputs after the first Relu
plot_activations(out[1], number_rows=4, name="Output after the 1st Relu")
The image below is the result of the activation map after the second output layer.
In [ ]:
# Plot the outputs after the second CNN
plot_activations(out[2], number_rows=32 // 4, name="Output after the 2nd CNN")
The image below is the result of the activation map after applying the second relu
In [ ]:
# Plot the outputs after the second Relu
plot_activations(out[3], number_rows=4, name="Output after the 2nd Relu")
We can see the result for the third sample
In [ ]:
# Show the third image
show_data(train_dataset[2])
In [ ]:
# Use the CNN activations class to see the steps
out = model.activations(train_dataset[2][0].view(1, 1, IMAGE_SIZE, IMAGE_SIZE))
In [ ]:
# Plot the outputs after the first CNN
plot_activations(out[0], number_rows=4, name="Output after the 1st CNN")
In [ ]:
# Plot the outputs after the first Relu
plot_activations(out[1], number_rows=4, name="Output after the 1st Relu")
In [ ]:
# Plot the outputs after the second CNN
plot_activations(out[2], number_rows=32 // 4, name="Output after the 2nd CNN")
In [ ]:
# Plot the outputs after the second Relu
plot_activations(out[3], number_rows=4, name="Output after the 2nd Relu")
Plot the first five mis-classified samples:
In [ ]:
# Plot the mis-classified samples
count = 0
for x, y in torch.utils.data.DataLoader(dataset=validation_dataset, batch_size=1):
z = model(x)
_, yhat = torch.max(z, 1)
if yhat != y:
show_data((x, y))
plt.show()
print("yhat: ",yhat)
count += 1
if count >= 5:
break
Joseph Santarcangelo has a PhD in Electrical Engineering, his research focused on using machine learning, signal processing, and computer vision to determine how videos impact human cognition. Joseph has been working for IBM since he completed his PhD.
Other contributors: Michelle Carey, Mavis Zhou
Thanks to Magnus Erik Hvass Pedersen whose tutorials helped me understand convolutional Neural Network
Copyright © 2018 cognitiveclass.ai. This notebook and its source code are released under the terms of the MIT License.