In this lab, you will learn to select the best learning rate by using validation data.
Estimated Time Needed: 30 min
We'll need the following libraries and set the random seed.
In [ ]:
# Import libraries we need for this lab, and set the random seed
from torch import nn
import torch
import numpy as np
import matplotlib.pyplot as plt
from torch import nn,optim
First, we'll create some artificial data in a dataset class. The class will include the option to produce training data or validation data. The training data will include outliers.
In [ ]:
# Create Data class
from torch.utils.data import Dataset, DataLoader
class Data(Dataset):
# Constructor
def __init__(self, train = True):
self.x = torch.arange(-3, 3, 0.1).view(-1, 1)
self.f = -3 * self.x + 1
self.y = self.f + 0.1 * torch.randn(self.x.size())
self.len = self.x.shape[0]
#outliers
if train == True:
self.y[0] = 0
self.y[50:55] = 20
else:
pass
# Getter
def __getitem__(self, index):
return self.x[index], self.y[index]
# Get Length
def __len__(self):
return self.len
Create two objects: one that contains training data and a second that contains validation data. Assume that the training data has the outliers.
In [ ]:
# Create training dataset and validation dataset
train_data = Data()
val_data = Data(train = False)
Overlay the training points in red over the function that generated the data. Notice the outliers at x=-3 and around x=2:
In [ ]:
# Plot out training points
plt.plot(train_data.x.numpy(), train_data.y.numpy(), 'xr')
plt.plot(train_data.x.numpy(), train_data.f.numpy())
plt.show()
In [ ]:
# Create Linear Regression Class
from torch import nn
class linear_regression(nn.Module):
# Constructor
def __init__(self, input_size, output_size):
super(linear_regression, self).__init__()
self.linear = nn.Linear(input_size, output_size)
# Prediction function
def forward(self, x):
yhat = self.linear(x)
return yhat
Create the criterion function and a DataLoader
object:
In [ ]:
# Create MSELoss function and DataLoader
criterion = nn.MSELoss()
trainloader = DataLoader(dataset = train_data, batch_size = 1)
Create a list with different learning rates and a tensor (can be a list) for the training and validating cost/total loss. Include the list MODELS, which stores the training model for every value of the learning rate.
In [ ]:
# Create Learning Rate list, the error lists and the MODELS list
learning_rates=[0.0001, 0.001, 0.01, 0.1]
train_error=torch.zeros(len(learning_rates))
validation_error=torch.zeros(len(learning_rates))
MODELS=[]
Try different values of learning rates, perform stochastic gradient descent, and save the results on the training data and validation data. Finally, save each model in a list.
In [ ]:
# Define the train model function and train the model
def train_model_with_lr (iter, lr_list):
# iterate through different learning rates
for i, lr in enumerate(lr_list):
model = linear_regression(1, 1)
optimizer = optim.SGD(model.parameters(), lr = lr)
for epoch in range(iter):
for x, y in trainloader:
yhat = model(x)
loss = criterion(yhat, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# train data
Yhat = model(train_data.x)
train_loss = criterion(Yhat, train_data.y)
train_error[i] = train_loss.item()
# validation data
Yhat = model(val_data.x)
val_loss = criterion(Yhat, val_data.y)
validation_error[i] = val_loss.item()
MODELS.append(model)
train_model_with_lr(10, learning_rates)
Plot the training loss and validation loss for each learning rate:
In [ ]:
# Plot the training loss and validation loss
plt.semilogx(np.array(learning_rates), train_error.numpy(), label = 'training loss/total Loss')
plt.semilogx(np.array(learning_rates), validation_error.numpy(), label = 'validation cost/total Loss')
plt.ylabel('Cost\ Total Loss')
plt.xlabel('learning rate')
plt.legend()
plt.show()
Produce a prediction by using the validation data for each model:
In [ ]:
# Plot the predictions
i = 0
for model, learning_rate in zip(MODELS, learning_rates):
yhat = model(val_data.x)
plt.plot(val_data.x.numpy(), yhat.detach().numpy(), label = 'lr:' + str(learning_rate))
print('i', yhat.detach().numpy()[0:3])
plt.plot(val_data.x.numpy(), val_data.f.numpy(), 'or', label = 'validation data')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show()
The object good_model
is the best performing model. Use the train loader to get the data samples x and y. Produce an estimate for yhat
and print it out for every sample in a for a loop. Compare it to the actual prediction y
.
In [ ]:
# Practice: Use the train loader to get the data samples x and y. Produce yhat. Compare y and yhat.
good_model = MODELS[2]
Double-click here for the solution.
Joseph Santarcangelo has a PhD in Electrical Engineering, his research focused on using machine learning, signal processing, and computer vision to determine how videos impact human cognition. Joseph has been working for IBM since he completed his PhD.
Other contributors: Michelle Carey, Mavis Zhou
Copyright © 2018 cognitiveclass.ai. This notebook and its source code are released under the terms of the MIT License.