This notebook explores the algebra defined in The Lie Model for Euclidean Geometry (Hongbo Li), and its application to solving Apollonius' Problem. It also shows
The algebra is constructed with basis elements $e_{-2}, e_{-1}, e_1, \cdots, e_n, e_{n+1}$, where $e_{-2}^2 = -e_{-1}^2 = -e_{n+1}^2 = 1$. This is an extension of a standard conformal algebra, with an extra $e_{n+1}$ basis vector.
Note that we permuted the order in the source code below to make ConformalLayout
happy.
In [ ]:
from clifford import ConformalLayout, BasisVectorIds, MultiVector
class OurCustomLayout(ConformalLayout):
def __init__(self, ndims):
self.ndims = ndims
# Construct our custom algebra. Note that ConformalLayout requires the e- and e+ basis vectors to be last.
ConformalLayout.__init__(
self,
[1]*ndims + [-1] + [1, -1],
ids=BasisVectorIds([str(i + 1) for i in range(ndims)] + ['np1', 'm2', 'm1'])
)
self.enp1 = self.basis_vectors_lst[ndims]
# Construct a base algebra without the extra `enp1`, which would not be understood by pyganja.
self.conformal_base = ConformalLayout(
[1]*ndims + [1, -1],
ids=BasisVectorIds([str(i + 1) for i in range(ndims)] + ['m2', 'm1'])
)
We define an ups
function which maps conformal dual-spheres into this algebra, as $s^\prime = s + \left|s\right|e_{n+1}$, and a downs
that applies the correct sign. The s
suffix here is chosen to mean sphere
.
In [ ]:
def ups(self, s):
return s + self.enp1*abs(s)
OurCustomLayout.ups = ups; del ups
def downs(self, mv):
if (mv | self.enp1)[()] > 0:
mv = -mv
return mv
OurCustomLayout.downs = downs; del downs
Before we start looking at specified dimensions of euclidean space, we build a helper to construct conformal dual circles and spheres, with the word round
being a general term intended to cover both circles and spheres.
In [ ]:
def dual_round(at, r):
l = at.layout
return l.up(at) - 0.5*l.einf*r*r
In order to render with pyganja
, we'll need a helper to convert from our custom $\mathbb{R}^{N+1,2}$ layout into a standard conformal $\mathbb{R}^{N+1,1}$ layout. clifford
maps indices in .value
to basis blades via layout._basis_blade_order.index_to_bitmap
, which we can use to convert the indices in one layout to the indices in another.
In [ ]:
def to_conformal(self, mv: MultiVector) -> MultiVector:
""" Convert a mv with `mv.layout == self` to one with `mv_new.layout == self.conformal_base`
This is done by discarding coefficients of blades containing enp1
"""
bits_base = self.conformal_base._basis_blade_order.index_to_bitmap
# insert the np1 bit into each basis blade bitmask, by...
bits = (
# ... leaving e1...en in place ...
bits_base & ~(~0 << self.ndims) |
# and moving em1 and em2 one bit to the left, leaving a 0 in the np1 bit
(bits_base & (0b11 << self.ndims)) << 1
)
# convert the new bitmaps into indices into the augmented value
inds = self._basis_blade_order.bitmap_to_index[bits]
# and pick only those indicess
return self.conformal_base.MultiVector(mv.value[inds])
OurCustomLayout.to_conformal = to_conformal; del to_conformal
Finally, we'll define a plotting function, which plots the problem and solution circles in suitable colors via pyganja
:
In [ ]:
import itertools
from pyganja import GanjaScene, draw
def plot_rounds(in_rounds, out_rounds, scale=1):
colors = itertools.cycle([
(255, 0, 0),
(0, 255, 0),
(0, 0, 255),
(0, 255, 255),
])
# note: .dual() neede here because we're passing in dual rounds, but ganja expects direct rounds
s = GanjaScene()
for r, color in zip(in_rounds, colors):
s.add_object(r.layout.to_conformal(r).dual(), color=color)
for r in out_rounds:
s.add_object(r.layout.to_conformal(r).dual(), color=(64, 64, 64))
draw(s, sig=r.layout.conformal_base.sig, scale=scale)
In [ ]:
l2 = OurCustomLayout(ndims=2)
e1, e2 = l2.basis_vectors_lst[:2]
This gives us the Layout
l2
with the desired metric,
In [ ]:
import pandas as pd # convenient but somewhat slow trick for showing tables
pd.DataFrame(l2.metric, index=l2.basis_names, columns=l2.basis_names)
Now we can build some dual circles:
In [ ]:
# add minus signs before `dual_round` to flip circle directions
c1 = dual_round(-e1-e2, 1)
c2 = dual_round(e1-e2, 0.75)
c3 = dual_round(e2, 0.5)
Compute the space orthogonal to all of them, which is an object of grade 2:
In [ ]:
pp = (l2.ups(c1) ^ l2.ups(c2) ^ l2.ups(c3)).dual()
pp.grades()
We hypothesize that this object is of the form l2.ups(c4) ^ l2.ups(c5)
.
Taking a step not mentioned in the original paper, we decide to treat this as a regular conformal point pair, which allows us to project out the two factors with the approach taken in A Covariant Approach to Geometry using Geometric Algebra.
Here, we normalize with $e_{n+1}$ instead of the usual $n_\infty$:
In [ ]:
def pp_ends(pp):
P = (1 + pp.normal()) / 2
return P * (pp | pp.layout.enp1), ~P * (pp | pp.layout.enp1)
c4u, c5u = pp_ends(pp)
And finally, plot our circles:
In [ ]:
plot_rounds([c1, c2, c3], [l2.downs(c4u), l2.downs(c5u)], scale=0.75)
This works for colinear circles too:
In [ ]:
c1 = dual_round(-1.5*e1, 0.5)
c2 = dual_round(e1*0, 0.5)
c3 = dual_round(1.5*e1, 0.5)
c4u, c5u = pp_ends((l2.ups(c1) ^ l2.ups(c2) ^ l2.ups(c3)).dual())
plot_rounds([c1, c2, c3], [l2.downs(c4u), l2.downs(c5u)])
In [ ]:
c1 = dual_round(-3*e1, 1.5)
c2 = dual_round(-2*e1, 1)
c3 = -dual_round(2*e1, 1)
c4u, c5u = pp_ends((l2.ups(c1) ^ l2.ups(c2) ^ l2.ups(c3)).dual())
plot_rounds([c1, c2, c3], [l2.downs(c4u), l2.downs(c5u)])
In [ ]:
l3 = OurCustomLayout(ndims=3)
e1, e2, e3 = l3.basis_vectors_lst[:3]
Again, we can check the metric:
In [ ]:
pd.DataFrame(l3.metric, index=l3.basis_names, columns=l3.basis_names)
And apply the solution to some spheres, noting that we now need 4 in order to constrain our solution
In [ ]:
c1 = dual_round(e1+e2+e3, 1)
c2 = dual_round(-e1+e2-e3, 0.25)
c3 = dual_round(e1-e2-e3, 0.5)
c4 = dual_round(-e1-e2+e3, 1)
c5u, c6u = pp_ends((l3.ups(c1) ^ l3.ups(c2) ^ l3.ups(c3) ^ l3.ups(c4)).dual())
plot_rounds([c1, c2, c3, c4], [l3.downs(c6u), l3.downs(c5u)], scale=0.25)
Note that the figure above can be rotated!