In [1]:
import tensorflow as tf
In [2]:
with tf.name_scope("OPERATION_A"):
a = tf.add(1, 2, name = "First_add")
a1 = tf.add(100, 200, name = 'a_add')
a2 = tf.multiply(a, a1)
with tf.name_scope("OPERATION_B"):
b = tf.add(3,4, name = 'Second_add')
b1 = tf.add(300,400,name = 'b_add')
b2 = tf.multiply(b, b1)
c = tf.multiply(a2, b2, name = 'final_result')
In [3]:
with tf.Session() as sess:
writer = tf.summary.FileWriter("./output", sess.graph)
print(sess.run(c))
writer.close()
In [4]:
k = tf.placeholder(tf.float32)
# Make a normal distribution, with a shifting mean
mean_moving_normal = tf.random_normal(shape = [1000],
mean = (5 * k),
stddev = 1)
# Record that distribution into a histogram summary
tf.summary.histogram("normal/moving_mean", mean_moving_normal)
# Setup a session and summary writer
with tf.Session() as sess:
writer = tf.summary.FileWriter("./tmp/histogram_example")
summaries = tf.summary.merge_all()
# Setup a loop and write the summaries to disk
N = 400
for step in range(N):
k_val = step/float(N)
summ = sess.run(summaries,
feed_dict = {k: k_val})
writer.add_summary(summ,
global_step = step)
writer.close()