In [1]:
    
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
%matplotlib inline
    
In [2]:
    
# Number of inputs for each example
num_inputs = 2
# Number of neurons in first layer
num_neurons = 3
    
In [3]:
    
# We now need two Xs! One for each timestamp (t=0 and t=1)
x0 = tf.placeholder(tf.float32,[None, num_inputs])
x1 = tf.placeholder(tf.float32,[None, num_inputs])
    
In [4]:
    
# We'll also need a Weights variable for each x
# Notice the shape dimensions on both!
Wx = tf.Variable(tf.random_normal(shape = [num_inputs, num_neurons]))
Wy = tf.Variable(tf.random_normal(shape = [num_neurons, num_neurons]))
    
In [5]:
    
b = tf.Variable(tf.zeros([1, num_neurons]))
    
In [6]:
    
# First Activation
y0 = tf.tanh(tf.matmul(x0, Wx) + b)
y1 = tf.tanh(tf.matmul(y0, Wy) + tf.matmul(x1, Wx) + b)
    
In [7]:
    
init = tf.global_variables_initializer()
    
In [8]:
    
# BATCH 0:       example1 , example2, example 3
x0_batch = np.array([[0, 1],  [2, 3],    [4, 5]]) # DATA AT TIMESTAMP = 0
# BATCH 0:          example1 ,   example2,   example 3
x1_batch = np.array([[100, 101], [102, 103],  [104, 105]]) # DATA AT TIMESTAMP = 1
    
In [9]:
    
with tf.Session() as sess:
    sess.run(init)
    y0_output_vals , y1_output_vals  = sess.run([y0, y1],
                                                feed_dict = {x0 : x0_batch,
                                                             x1 : x1_batch})
    
In [10]:
    
# The output of values at t=0
y0_output_vals
    
    Out[10]:
In [11]:
    
# Output at t=1
y1_output_vals
    
    Out[11]: