In [1]:
import numpy as np
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from IPython import display
plt.style.use('seaborn-white')
In [2]:
data = open('input.txt', 'r').read()
Process data and calculate indexes
In [3]:
chars = list(set(data))
data_size, X_size = len(data), len(chars)
print("data has %d characters, %d unique" % (data_size, X_size))
char_to_idx = {ch:i for i,ch in enumerate(chars)}
idx_to_char = {i:ch for i,ch in enumerate(chars)}
In [4]:
H_size = 100 # Size of the hidden layer
T_steps = 25 # Number of time steps (length of the sequence) used for training
learning_rate = 1e-1 # Learning rate
weight_sd = 0.1 # Standard deviation of weights for initialization
z_size = H_size + X_size # Size of concatenate(H, X) vector
In [5]:
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def dsigmoid(y):
return y * (1 - y)
def tanh(x):
return np.tanh(x)
def dtanh(y):
return 1 - y * y
In [6]:
class Param:
def __init__(self, name, value):
self.name = name
self.v = value #parameter value
self.d = np.zeros_like(value) #derivative
self.m = np.zeros_like(value) #momentum for AdaGrad
We use random weights with normal distribution (0
, weight_sd
) for $tanh$ activation function and (0.5
, weight_sd
) for $sigmoid$ activation function.
Biases are initialized to zeros.
In [7]:
class Parameters:
def __init__(self):
self.W_f = Param('W_f',
np.random.randn(H_size, z_size) * weight_sd + 0.5)
self.b_f = Param('b_f',
np.zeros((H_size, 1)))
self.W_i = Param('W_i',
np.random.randn(H_size, z_size) * weight_sd + 0.5)
self.b_i = Param('b_i',
np.zeros((H_size, 1)))
self.W_C = Param('W_C',
np.random.randn(H_size, z_size) * weight_sd)
self.b_C = Param('b_C',
np.zeros((H_size, 1)))
self.W_o = Param('W_o',
np.random.randn(H_size, z_size) * weight_sd + 0.5)
self.b_o = Param('b_o',
np.zeros((H_size, 1)))
#For final layer to predict the next character
self.W_v = Param('W_v',
np.random.randn(X_size, H_size) * weight_sd)
self.b_v = Param('b_v',
np.zeros((X_size, 1)))
def all(self):
return [self.W_f, self.W_i, self.W_C, self.W_o, self.W_v,
self.b_f, self.b_i, self.b_C, self.b_o, self.b_v]
parameters = Parameters()
Operation $z$ is the concatenation of $x$ and $h_{t-1}$
$\hat{y_t}$ is y
in code and $y_t$ is targets
.
In [8]:
def forward(x, h_prev, C_prev, p = parameters):
assert x.shape == (X_size, 1)
assert h_prev.shape == (H_size, 1)
assert C_prev.shape == (H_size, 1)
z = np.row_stack((h_prev, x))
f = sigmoid(np.dot(p.W_f.v, z) + p.b_f.v)
i = sigmoid(np.dot(p.W_i.v, z) + p.b_i.v)
C_bar = tanh(np.dot(p.W_C.v, z) + p.b_C.v)
C = f * C_prev + i * C_bar
o = sigmoid(np.dot(p.W_o.v, z) + p.b_o.v)
h = o * tanh(C)
v = np.dot(p.W_v.v, h) + p.b_v.v
y = np.exp(v) / np.sum(np.exp(v)) #softmax
return z, f, i, C_bar, C, o, h, v, y
target
is target character index $y_t$dh_next
is $dh'_{t}$ (size H x 1)dC_next
is $dC'_{t}$ (size H x 1)C_prev
is $C_{t-1}$ (size H x 1)df
, di
, dC_bar
, and do
in the code.
In [9]:
def backward(target, dh_next, dC_next, C_prev,
z, f, i, C_bar, C, o, h, v, y,
p = parameters):
assert z.shape == (X_size + H_size, 1)
assert v.shape == (X_size, 1)
assert y.shape == (X_size, 1)
for param in [dh_next, dC_next, C_prev, f, i, C_bar, C, o, h]:
assert param.shape == (H_size, 1)
dv = np.copy(y)
dv[target] -= 1
p.W_v.d += np.dot(dv, h.T)
p.b_v.d += dv
dh = np.dot(p.W_v.v.T, dv)
dh += dh_next
do = dh * tanh(C)
do = dsigmoid(o) * do
p.W_o.d += np.dot(do, z.T)
p.b_o.d += do
dC = np.copy(dC_next)
dC += dh * o * dtanh(tanh(C))
dC_bar = dC * i
dC_bar = dtanh(C_bar) * dC_bar
p.W_C.d += np.dot(dC_bar, z.T)
p.b_C.d += dC_bar
di = dC * C_bar
di = dsigmoid(i) * di
p.W_i.d += np.dot(di, z.T)
p.b_i.d += di
df = dC * C_prev
df = dsigmoid(f) * df
p.W_f.d += np.dot(df, z.T)
p.b_f.d += df
dz = (np.dot(p.W_f.v.T, df)
+ np.dot(p.W_i.v.T, di)
+ np.dot(p.W_C.v.T, dC_bar)
+ np.dot(p.W_o.v.T, do))
dh_prev = dz[:H_size, :]
dC_prev = f * dC
return dh_prev, dC_prev
Clear gradients before each backward pass
In [10]:
def clear_gradients(params = parameters):
for p in params.all():
p.d.fill(0)
Clip gradients to mitigate exploding gradients
In [11]:
def clip_gradients(params = parameters):
for p in params.all():
np.clip(p.d, -1, 1, out=p.d)
Calculate and store the values in forward pass. Accumulate gradients in backward pass and clip gradients to avoid exploding gradients.
input
, target
are list of integers, with character indexes.h_prev
is the array of initial h
at $h_{-1}$ (size H x 1)C_prev
is the array of initial C
at $C_{-1}$ (size H x 1)
In [12]:
def forward_backward(inputs, targets, h_prev, C_prev):
global paramters
# To store the values for each time step
x_s, z_s, f_s, i_s, = {}, {}, {}, {}
C_bar_s, C_s, o_s, h_s = {}, {}, {}, {}
v_s, y_s = {}, {}
# Values at t - 1
h_s[-1] = np.copy(h_prev)
C_s[-1] = np.copy(C_prev)
loss = 0
# Loop through time steps
assert len(inputs) == T_steps
for t in range(len(inputs)):
x_s[t] = np.zeros((X_size, 1))
x_s[t][inputs[t]] = 1 # Input character
(z_s[t], f_s[t], i_s[t],
C_bar_s[t], C_s[t], o_s[t], h_s[t],
v_s[t], y_s[t]) = \
forward(x_s[t], h_s[t - 1], C_s[t - 1]) # Forward pass
loss += -np.log(y_s[t][targets[t], 0]) # Loss for at t
clear_gradients()
dh_next = np.zeros_like(h_s[0]) #dh from the next character
dC_next = np.zeros_like(C_s[0]) #dh from the next character
for t in reversed(range(len(inputs))):
# Backward pass
dh_next, dC_next = \
backward(target = targets[t], dh_next = dh_next,
dC_next = dC_next, C_prev = C_s[t-1],
z = z_s[t], f = f_s[t], i = i_s[t], C_bar = C_bar_s[t],
C = C_s[t], o = o_s[t], h = h_s[t], v = v_s[t],
y = y_s[t])
clip_gradients()
return loss, h_s[len(inputs) - 1], C_s[len(inputs) - 1]
In [13]:
def sample(h_prev, C_prev, first_char_idx, sentence_length):
x = np.zeros((X_size, 1))
x[first_char_idx] = 1
h = h_prev
C = C_prev
indexes = []
for t in range(sentence_length):
_, _, _, _, C, _, h, _, p = forward(x, h, C)
idx = np.random.choice(range(X_size), p=p.ravel())
x = np.zeros((X_size, 1))
x[idx] = 1
indexes.append(idx)
return indexes
Update the graph and display a sample output
In [14]:
def update_status(inputs, h_prev, C_prev):
#initialized later
global plot_iter, plot_loss
global smooth_loss
# Get predictions for 200 letters with current model
sample_idx = sample(h_prev, C_prev, inputs[0], 200)
txt = ''.join(idx_to_char[idx] for idx in sample_idx)
# Clear and plot
plt.plot(plot_iter, plot_loss)
display.clear_output(wait=True)
plt.show()
#Print prediction and loss
print("----\n %s \n----" % (txt, ))
print("iter %d, loss %f" % (iteration, smooth_loss))
Update parameters
\begin{align} \theta_i &= \theta_i - \eta\frac{d\theta_i}{\sum dw_{\tau}^2} \\ d\theta_i &= \frac{\partial L}{\partial \theta_i} \end{align}
In [15]:
def update_paramters(params = parameters):
for p in params.all():
p.m += p.d * p.d # Calculate sum of gradients
#print(learning_rate * dparam)
p.v += -(learning_rate * p.d / np.sqrt(p.m + 1e-8))
To delay the keyboard interrupt to prevent the training from stopping in the middle of an iteration
In [16]:
import signal
class DelayedKeyboardInterrupt(object):
def __enter__(self):
self.signal_received = False
self.old_handler = signal.signal(signal.SIGINT, self.handler)
def handler(self, sig, frame):
self.signal_received = (sig, frame)
print('SIGINT received. Delaying KeyboardInterrupt.')
def __exit__(self, type, value, traceback):
signal.signal(signal.SIGINT, self.old_handler)
if self.signal_received:
self.old_handler(*self.signal_received)
In [17]:
# Exponential average of loss
# Initialize to a error of a random model
smooth_loss = -np.log(1.0 / X_size) * T_steps
iteration, pointer = 0, 0
# For the graph
plot_iter = np.zeros((0))
plot_loss = np.zeros((0))
Training loop
In [18]:
while True:
try:
with DelayedKeyboardInterrupt():
# Reset
if pointer + T_steps >= len(data) or iteration == 0:
g_h_prev = np.zeros((H_size, 1))
g_C_prev = np.zeros((H_size, 1))
pointer = 0
inputs = ([char_to_idx[ch]
for ch in data[pointer: pointer + T_steps]])
targets = ([char_to_idx[ch]
for ch in data[pointer + 1: pointer + T_steps + 1]])
loss, g_h_prev, g_C_prev = \
forward_backward(inputs, targets, g_h_prev, g_C_prev)
smooth_loss = smooth_loss * 0.999 + loss * 0.001
# Print every hundred steps
if iteration % 100 == 0:
update_status(inputs, g_h_prev, g_C_prev)
update_paramters()
plot_iter = np.append(plot_iter, [iteration])
plot_loss = np.append(plot_loss, [loss])
pointer += T_steps
iteration += 1
except KeyboardInterrupt:
update_status(inputs, g_h_prev, g_C_prev)
break
Approximate the numerical gradients by changing parameters and running the model. Check if the approximated gradients are equal to the computed analytical gradients (by backpropagation).
Try this on num_checks
individual paramters picked randomly for each weight matrix and bias vector.
In [ ]:
from random import uniform
Calculate numerical gradient
In [ ]:
def calc_numerical_gradient(param, idx, delta, inputs, target, h_prev, C_prev):
old_val = param.v.flat[idx]
# evaluate loss at [x + delta] and [x - delta]
param.v.flat[idx] = old_val + delta
loss_plus_delta, _, _ = forward_backward(inputs, targets,
h_prev, C_prev)
param.v.flat[idx] = old_val - delta
loss_mins_delta, _, _ = forward_backward(inputs, targets,
h_prev, C_prev)
param.v.flat[idx] = old_val #reset
grad_numerical = (loss_plus_delta - loss_mins_delta) / (2 * delta)
# Clip numerical error because analytical gradient is clipped
[grad_numerical] = np.clip([grad_numerical], -1, 1)
return grad_numerical
Check gradient of each paramter matrix/vector at num_checks
individual values
In [ ]:
def gradient_check(num_checks, delta, inputs, target, h_prev, C_prev):
global parameters
# To calculate computed gradients
_, _, _ = forward_backward(inputs, targets, h_prev, C_prev)
for param in parameters.all():
#Make a copy because this will get modified
d_copy = np.copy(param.d)
# Test num_checks times
for i in range(num_checks):
# Pick a random index
rnd_idx = int(uniform(0, param.v.size))
grad_numerical = calc_numerical_gradient(param,
rnd_idx,
delta,
inputs,
target,
h_prev, C_prev)
grad_analytical = d_copy.flat[rnd_idx]
err_sum = abs(grad_numerical + grad_analytical) + 1e-09
rel_error = abs(grad_analytical - grad_numerical) / err_sum
# If relative error is greater than 1e-06
if rel_error > 1e-06:
print('%s (%e, %e) => %e'
% (param.name, grad_numerical, grad_analytical, rel_error))
In [ ]:
gradient_check(10, 1e-5, inputs, targets, g_h_prev, g_C_prev)