Imports


In [1]:
import numpy as np
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from IPython import display
plt.style.use('seaborn-white')

Read and process data


In [2]:
data = open('input.txt', 'r').read()

Process data and calculate indexes


In [3]:
chars = list(set(data))
data_size, X_size = len(data), len(chars)
print("data has %d characters, %d unique" % (data_size, X_size))
char_to_idx = {ch:i for i,ch in enumerate(chars)}
idx_to_char = {i:ch for i,ch in enumerate(chars)}


data has 1115402 characters, 65 unique

Constants and Hyperparameters


In [4]:
H_size = 100 # Size of the hidden layer
T_steps = 25 # Number of time steps (length of the sequence) used for training
learning_rate = 1e-1 # Learning rate
weight_sd = 0.1 # Standard deviation of weights for initialization
z_size = H_size + X_size # Size of concatenate(H, X) vector

Activation Functions and Derivatives

Sigmoid

\begin{align} \sigma(x) &= \frac{1}{1 + e^{-x}}\\ \frac{d\sigma(x)}{dx} &= \sigma(x) \cdot (1 - \sigma(x)) \end{align}

Tanh

\begin{align} \frac{d\text{tanh}(x)}{dx} &= 1 - \text{tanh}^2(x) \end{align}

In [5]:
def sigmoid(x):
    return 1 / (1 + np.exp(-x))


def dsigmoid(y):
    return y * (1 - y)


def tanh(x):
    return np.tanh(x)


def dtanh(y):
    return 1 - y * y

Parameters


In [6]:
class Param:
    def __init__(self, name, value):
        self.name = name
        self.v = value #parameter value
        self.d = np.zeros_like(value) #derivative
        self.m = np.zeros_like(value) #momentum for AdaGrad

We use random weights with normal distribution (0, weight_sd) for $tanh$ activation function and (0.5, weight_sd) for $sigmoid$ activation function.

Biases are initialized to zeros.


In [7]:
class Parameters:
    def __init__(self):
        self.W_f = Param('W_f', 
                         np.random.randn(H_size, z_size) * weight_sd + 0.5)
        self.b_f = Param('b_f',
                         np.zeros((H_size, 1)))

        self.W_i = Param('W_i',
                         np.random.randn(H_size, z_size) * weight_sd + 0.5)
        self.b_i = Param('b_i',
                         np.zeros((H_size, 1)))

        self.W_C = Param('W_C',
                         np.random.randn(H_size, z_size) * weight_sd)
        self.b_C = Param('b_C',
                         np.zeros((H_size, 1)))

        self.W_o = Param('W_o',
                         np.random.randn(H_size, z_size) * weight_sd + 0.5)
        self.b_o = Param('b_o',
                         np.zeros((H_size, 1)))

        #For final layer to predict the next character
        self.W_v = Param('W_v',
                         np.random.randn(X_size, H_size) * weight_sd)
        self.b_v = Param('b_v',
                         np.zeros((X_size, 1)))
        
    def all(self):
        return [self.W_f, self.W_i, self.W_C, self.W_o, self.W_v,
               self.b_f, self.b_i, self.b_C, self.b_o, self.b_v]
        
parameters = Parameters()

Forward pass

Operation $z$ is the concatenation of $x$ and $h_{t-1}$

Concatenation of $h_{t-1}$ and $x_t$

\begin{align} z & = [h_{t-1}, x_t] \\ \end{align}

LSTM functions

\begin{align} f_t & = \sigma(W_f \cdot z + b_f) \\ i_t & = \sigma(W_i \cdot z + b_i) \\ \bar{C}_t & = tanh(W_C \cdot z + b_C) \\ C_t & = f_t * C_{t-1} + i_t * \bar{C}_t \\ o_t & = \sigma(W_o \cdot z + b_t) \\ h_t &= o_t * tanh(C_t) \\ \end{align}

Logits

\begin{align} v_t &= W_v \cdot h_t + b_v \\ \end{align}

Softmax

\begin{align} \hat{y_t} &= \text{softmax}(v_t) \end{align}

$\hat{y_t}$ is y in code and $y_t$ is targets.


In [8]:
def forward(x, h_prev, C_prev, p = parameters):
    assert x.shape == (X_size, 1)
    assert h_prev.shape == (H_size, 1)
    assert C_prev.shape == (H_size, 1)
    
    z = np.row_stack((h_prev, x))
    f = sigmoid(np.dot(p.W_f.v, z) + p.b_f.v)
    i = sigmoid(np.dot(p.W_i.v, z) + p.b_i.v)
    C_bar = tanh(np.dot(p.W_C.v, z) + p.b_C.v)

    C = f * C_prev + i * C_bar
    o = sigmoid(np.dot(p.W_o.v, z) + p.b_o.v)
    h = o * tanh(C)

    v = np.dot(p.W_v.v, h) + p.b_v.v
    y = np.exp(v) / np.sum(np.exp(v)) #softmax

    return z, f, i, C_bar, C, o, h, v, y

Backward pass

Loss

\begin{align} L_k &= -\sum_{t=k}^T\sum_j y_{t,j} log \hat{y_{t,j}} \\ L &= L_1 \\ \end{align}

Gradients

\begin{align} dv_t &= \hat{y_t} - y_t \\ dh_t &= dh'_t + W_y^T \cdot dv_t \\ do_t &= dh_t * \text{tanh}(C_t) \\ dC_t &= dC'_t + dh_t * o_t * (1 - \text{tanh}^2(C_t))\\ d\bar{C}_t &= dC_t * i_t \\ di_t &= dC_t * \bar{C}_t \\ df_t &= dC_t * C_{t-1} \\ \\ df'_t &= f_t * (1 - f_t) * df_t \\ di'_t &= i_t * (1 - i_t) * di_t \\ d\bar{C}'_{t-1} &= (1 - \bar{C}_t^2) * d\bar{C}_t \\ do'_t &= o_t * (1 - o_t) * do_t \\ dz_t &= W_f^T \cdot df'_t \\ &+ W_i^T \cdot di_t \\ &+ W_C^T \cdot d\bar{C}_t \\ &+ W_o^T \cdot do_t \\ \\ [dh'_{t-1}, dx_t] &= dz_t \\ dC'_t &= f_t * dC_t \end{align}
  • $dC'_t = \frac{\partial L_{t+1}}{\partial C_t}$ and $dh'_t = \frac{\partial L_{t+1}}{\partial h_t}$
  • $dC_t = \frac{\partial L}{\partial C_t} = \frac{\partial L_t}{\partial C_t}$ and $dh_t = \frac{\partial L}{\partial h_t} = \frac{\partial L_{t}}{\partial h_t}$
  • All other derivatives are of $L$
  • target is target character index $y_t$
  • dh_next is $dh'_{t}$ (size H x 1)
  • dC_next is $dC'_{t}$ (size H x 1)
  • C_prev is $C_{t-1}$ (size H x 1)
  • $df'_t$, $di'_t$, $d\bar{C}'_t$, and $do'_t$ are also assigned to df, di, dC_bar, and do in the code.
  • Returns $dh_t$ and $dC_t$

Model parameter gradients

\begin{align} dW_v &= dv_t \cdot h_t^T \\ db_v &= dv_t \\ \\ dW_f &= df'_t \cdot z^T \\ db_f &= df'_t \\ \\ dW_i &= di'_t \cdot z^T \\ db_i &= di'_t \\ \\ dW_C &= d\bar{C}'_t \cdot z^T \\ db_C &= d\bar{C}'_t \\ \\ dW_o &= do'_t \cdot z^T \\ db_o &= do'_t \\ \\ \end{align}

In [9]:
def backward(target, dh_next, dC_next, C_prev,
             z, f, i, C_bar, C, o, h, v, y,
             p = parameters):
    
    assert z.shape == (X_size + H_size, 1)
    assert v.shape == (X_size, 1)
    assert y.shape == (X_size, 1)
    
    for param in [dh_next, dC_next, C_prev, f, i, C_bar, C, o, h]:
        assert param.shape == (H_size, 1)
        
    dv = np.copy(y)
    dv[target] -= 1

    p.W_v.d += np.dot(dv, h.T)
    p.b_v.d += dv

    dh = np.dot(p.W_v.v.T, dv)        
    dh += dh_next
    do = dh * tanh(C)
    do = dsigmoid(o) * do
    p.W_o.d += np.dot(do, z.T)
    p.b_o.d += do

    dC = np.copy(dC_next)
    dC += dh * o * dtanh(tanh(C))
    dC_bar = dC * i
    dC_bar = dtanh(C_bar) * dC_bar
    p.W_C.d += np.dot(dC_bar, z.T)
    p.b_C.d += dC_bar

    di = dC * C_bar
    di = dsigmoid(i) * di
    p.W_i.d += np.dot(di, z.T)
    p.b_i.d += di

    df = dC * C_prev
    df = dsigmoid(f) * df
    p.W_f.d += np.dot(df, z.T)
    p.b_f.d += df

    dz = (np.dot(p.W_f.v.T, df)
         + np.dot(p.W_i.v.T, di)
         + np.dot(p.W_C.v.T, dC_bar)
         + np.dot(p.W_o.v.T, do))
    dh_prev = dz[:H_size, :]
    dC_prev = f * dC
    
    return dh_prev, dC_prev

Forward Backward Pass

Clear gradients before each backward pass


In [10]:
def clear_gradients(params = parameters):
    for p in params.all():
        p.d.fill(0)

Clip gradients to mitigate exploding gradients


In [11]:
def clip_gradients(params = parameters):
    for p in params.all():
        np.clip(p.d, -1, 1, out=p.d)

Calculate and store the values in forward pass. Accumulate gradients in backward pass and clip gradients to avoid exploding gradients.

  • input, target are list of integers, with character indexes.
  • h_prev is the array of initial h at $h_{-1}$ (size H x 1)
  • C_prev is the array of initial C at $C_{-1}$ (size H x 1)
  • Returns loss, final $h_T$ and $C_T$

In [12]:
def forward_backward(inputs, targets, h_prev, C_prev):
    global paramters
    
    # To store the values for each time step
    x_s, z_s, f_s, i_s,  = {}, {}, {}, {}
    C_bar_s, C_s, o_s, h_s = {}, {}, {}, {}
    v_s, y_s =  {}, {}
    
    # Values at t - 1
    h_s[-1] = np.copy(h_prev)
    C_s[-1] = np.copy(C_prev)
    
    loss = 0
    # Loop through time steps
    assert len(inputs) == T_steps
    for t in range(len(inputs)):
        x_s[t] = np.zeros((X_size, 1))
        x_s[t][inputs[t]] = 1 # Input character
        
        (z_s[t], f_s[t], i_s[t],
        C_bar_s[t], C_s[t], o_s[t], h_s[t],
        v_s[t], y_s[t]) = \
            forward(x_s[t], h_s[t - 1], C_s[t - 1]) # Forward pass
            
        loss += -np.log(y_s[t][targets[t], 0]) # Loss for at t
        
    clear_gradients()

    dh_next = np.zeros_like(h_s[0]) #dh from the next character
    dC_next = np.zeros_like(C_s[0]) #dh from the next character

    for t in reversed(range(len(inputs))):
        # Backward pass
        dh_next, dC_next = \
            backward(target = targets[t], dh_next = dh_next,
                     dC_next = dC_next, C_prev = C_s[t-1],
                     z = z_s[t], f = f_s[t], i = i_s[t], C_bar = C_bar_s[t],
                     C = C_s[t], o = o_s[t], h = h_s[t], v = v_s[t],
                     y = y_s[t])

    clip_gradients()
        
    return loss, h_s[len(inputs) - 1], C_s[len(inputs) - 1]

Sample the next character


In [13]:
def sample(h_prev, C_prev, first_char_idx, sentence_length):
    x = np.zeros((X_size, 1))
    x[first_char_idx] = 1

    h = h_prev
    C = C_prev

    indexes = []
    
    for t in range(sentence_length):
        _, _, _, _, C, _, h, _, p = forward(x, h, C)
        idx = np.random.choice(range(X_size), p=p.ravel())
        x = np.zeros((X_size, 1))
        x[idx] = 1
        indexes.append(idx)

    return indexes

Training (Adagrad)

Update the graph and display a sample output


In [14]:
def update_status(inputs, h_prev, C_prev):
    #initialized later
    global plot_iter, plot_loss
    global smooth_loss
    
    # Get predictions for 200 letters with current model

    sample_idx = sample(h_prev, C_prev, inputs[0], 200)
    txt = ''.join(idx_to_char[idx] for idx in sample_idx)

    # Clear and plot
    plt.plot(plot_iter, plot_loss)
    display.clear_output(wait=True)
    plt.show()

    #Print prediction and loss
    print("----\n %s \n----" % (txt, ))
    print("iter %d, loss %f" % (iteration, smooth_loss))

Update parameters

\begin{align} \theta_i &= \theta_i - \eta\frac{d\theta_i}{\sum dw_{\tau}^2} \\ d\theta_i &= \frac{\partial L}{\partial \theta_i} \end{align}

In [15]:
def update_paramters(params = parameters):
    for p in params.all():
        p.m += p.d * p.d # Calculate sum of gradients
        #print(learning_rate * dparam)
        p.v += -(learning_rate * p.d / np.sqrt(p.m + 1e-8))

To delay the keyboard interrupt to prevent the training from stopping in the middle of an iteration


In [16]:
import signal

class DelayedKeyboardInterrupt(object):
    def __enter__(self):
        self.signal_received = False
        self.old_handler = signal.signal(signal.SIGINT, self.handler)

    def handler(self, sig, frame):
        self.signal_received = (sig, frame)
        print('SIGINT received. Delaying KeyboardInterrupt.')

    def __exit__(self, type, value, traceback):
        signal.signal(signal.SIGINT, self.old_handler)
        if self.signal_received:
            self.old_handler(*self.signal_received)

In [17]:
# Exponential average of loss
# Initialize to a error of a random model
smooth_loss = -np.log(1.0 / X_size) * T_steps

iteration, pointer = 0, 0

# For the graph
plot_iter = np.zeros((0))
plot_loss = np.zeros((0))

Training loop


In [18]:
while True:
    try:
        with DelayedKeyboardInterrupt():
            # Reset
            if pointer + T_steps >= len(data) or iteration == 0:
                g_h_prev = np.zeros((H_size, 1))
                g_C_prev = np.zeros((H_size, 1))
                pointer = 0


            inputs = ([char_to_idx[ch] 
                       for ch in data[pointer: pointer + T_steps]])
            targets = ([char_to_idx[ch] 
                        for ch in data[pointer + 1: pointer + T_steps + 1]])

            loss, g_h_prev, g_C_prev = \
                forward_backward(inputs, targets, g_h_prev, g_C_prev)
            smooth_loss = smooth_loss * 0.999 + loss * 0.001

            # Print every hundred steps
            if iteration % 100 == 0:
                update_status(inputs, g_h_prev, g_C_prev)

            update_paramters()

            plot_iter = np.append(plot_iter, [iteration])
            plot_loss = np.append(plot_loss, [loss])

            pointer += T_steps
            iteration += 1
    except KeyboardInterrupt:
        update_status(inputs, g_h_prev, g_C_prev)
        break


----
 .

MENENUS:
Rothy firertoud a to saken; brours Vulls hindss
Serrserd be claus kist yous surd your dondsther ums.

GMRUS:
with
And my itenten.

CORUDnd Toh ReDIUS:
Hald lim nod praki pat, lif haw wiviT 
----
iter 6231, loss 51.562062

Gradient Check

Approximate the numerical gradients by changing parameters and running the model. Check if the approximated gradients are equal to the computed analytical gradients (by backpropagation).

Try this on num_checks individual paramters picked randomly for each weight matrix and bias vector.


In [ ]:
from random import uniform

Calculate numerical gradient


In [ ]:
def calc_numerical_gradient(param, idx, delta, inputs, target, h_prev, C_prev):
    old_val = param.v.flat[idx]
    
    # evaluate loss at [x + delta] and [x - delta]
    param.v.flat[idx] = old_val + delta
    loss_plus_delta, _, _ = forward_backward(inputs, targets,
                                             h_prev, C_prev)
    param.v.flat[idx] = old_val - delta
    loss_mins_delta, _, _ = forward_backward(inputs, targets, 
                                             h_prev, C_prev)
    
    param.v.flat[idx] = old_val #reset

    grad_numerical = (loss_plus_delta - loss_mins_delta) / (2 * delta)
    # Clip numerical error because analytical gradient is clipped
    [grad_numerical] = np.clip([grad_numerical], -1, 1) 
    
    return grad_numerical

Check gradient of each paramter matrix/vector at num_checks individual values


In [ ]:
def gradient_check(num_checks, delta, inputs, target, h_prev, C_prev):
    global parameters
    
    # To calculate computed gradients
    _, _, _ =  forward_backward(inputs, targets, h_prev, C_prev)
    
    
    for param in parameters.all():
        #Make a copy because this will get modified
        d_copy = np.copy(param.d)

        # Test num_checks times
        for i in range(num_checks):
            # Pick a random index
            rnd_idx = int(uniform(0, param.v.size))
            
            grad_numerical = calc_numerical_gradient(param,
                                                     rnd_idx,
                                                     delta,
                                                     inputs,
                                                     target,
                                                     h_prev, C_prev)
            grad_analytical = d_copy.flat[rnd_idx]

            err_sum = abs(grad_numerical + grad_analytical) + 1e-09
            rel_error = abs(grad_analytical - grad_numerical) / err_sum
            
            # If relative error is greater than 1e-06
            if rel_error > 1e-06:
                print('%s (%e, %e) => %e'
                      % (param.name, grad_numerical, grad_analytical, rel_error))

In [ ]:
gradient_check(10, 1e-5, inputs, targets, g_h_prev, g_C_prev)