==================== Bloch-Redfield tensor:
Quantum object: dims = [[[10, 2], [10, 2]], [[10, 2], [10, 2]]], shape = [400, 400], type = super, isherm = False\begin{equation*}\begin{pmatrix}0.0 & 0.0 & 0.0 & 0.0 & \cdots & 0.0 & 0.0 & 0.0 & 0.0\\0.0 & (-0.013-5.969j) & 0.0 & 0.0 & \cdots & 0.0 & 0.0 & 0.0 & 0.0\\0.0 & 0.0 & (-0.012-6.597j) & 0.0 & \cdots & 0.0 & 0.0 & 0.0 & 0.0\\0.0 & 0.0 & 0.0 & (-0.039-12.122j) & \cdots & 0.0 & 0.0 & 0.0 & 0.0\\\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots\\0.0 & 0.0 & 0.0 & 0.0 & \cdots & (-0.413+11.758j) & 0.0 & 0.0 & 0.0\\0.0 & 0.0 & 0.0 & 0.0 & \cdots & 0.0 & (-0.441+7.263j) & 0.0 & 0.0\\0.0 & 0.0 & 0.0 & 0.0 & \cdots & 0.0 & 0.0 & (-0.436+5.382j) & 0.0\\0.0 & 0.0 & 0.0 & 0.0 & \cdots & 0.0 & 0.0 & 0.0 & -0.457\\\end{pmatrix}\end{equation*}
==================== Lindblad liouvilllian:
Quantum object: dims = [[[10, 2], [10, 2]], [[10, 2], [10, 2]]], shape = [400, 400], type = super, isherm = False\begin{equation*}\begin{pmatrix}0.0 & 0.0 & 0.0 & -0.314j & \cdots & 0.0 & 0.0 & 0.0 & 0.0\\0.0 & -6.283j & -0.314j & 0.0 & \cdots & 0.0 & 0.0 & 0.0 & 0.0\\0.0 & -0.314j & (-0.025-6.283j) & 0.0 & \cdots & 0.0 & 0.0 & 0.0 & 0.0\\-0.314j & 0.0 & 0.0 & (-0.025-12.566j) & \cdots & 0.0 & 0.0 & 0.0 & 0.0\\\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots\\0.0 & 0.0 & 0.0 & 0.0 & \cdots & (-0.425+12.566j) & 0.0 & 0.0 & -0.942j\\0.0 & 0.0 & 0.0 & 0.0 & \cdots & 0.0 & (-0.425+6.283j) & -0.942j & 0.0\\0.0 & 0.0 & 0.0 & 0.0 & \cdots & 0.0 & -0.942j & (-0.450+6.283j) & 0.0\\0.0 & 0.0 & 0.0 & 0.0 & \cdots & -0.942j & 0.0 & 0.0 & -0.450\\\end{pmatrix}\end{equation*}
==================== Bloch-Redfield steadystate dm
Quantum object: dims = [[10, 2], [10, 2]], shape = [20, 20], type = oper, isherm = True\begin{equation*}\begin{pmatrix}0.999 & 0.0 & 0.0 & -0.025 & \cdots & 5.302\times10^{-14} & 0.0 & 0.0 & -3.974\times10^{-15}\\0.0 & 1.178\times10^{-16} & 1.068\times10^{-16} & 0.0 & \cdots & 0.0 & -2.567\times10^{-27} & 6.629\times10^{-29} & 0.0\\0.0 & 1.068\times10^{-16} & 1.123\times10^{-16} & 0.0 & \cdots & 0.0 & -9.345\times10^{-26} & 3.427\times10^{-27} & 0.0\\-0.025 & 0.0 & 0.0 & 6.254\times10^{-04} & \cdots & -1.326\times10^{-15} & 0.0 & 0.0 & 9.942\times10^{-17}\\\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots\\5.302\times10^{-14} & 0.0 & 0.0 & -1.326\times10^{-15} & \cdots & 7.156\times10^{-19} & 0.0 & 0.0 & -8.045\times10^{-20}\\0.0 & -2.567\times10^{-27} & -9.345\times10^{-26} & 0.0 & \cdots & 0.0 & 1.109\times10^{-18} & 4.541\times10^{-18} & 0.0\\0.0 & 6.629\times10^{-29} & 3.427\times10^{-27} & 0.0 & \cdots & 0.0 & 4.541\times10^{-18} & 8.001\times10^{-19} & 0.0\\-3.974\times10^{-15} & 0.0 & 0.0 & 9.942\times10^{-17} & \cdots & -8.045\times10^{-20} & 0.0 & 0.0 & 8.080\times10^{-21}\\\end{pmatrix}\end{equation*}
==================== Lindblad steadystate dm
Quantum object: dims = [[10, 2], [10, 2]], shape = [20, 20], type = oper, isherm = True\begin{equation*}\begin{pmatrix}0.998 & 0.0 & 0.0 & (-0.025+4.974\times10^{-05}j) & \cdots & 5.318\times10^{-14} & 0.0 & 0.0 & -7.975\times10^{-16}\\0.0 & 6.282\times10^{-04} & (-3.128\times10^{-05}+4.971\times10^{-05}j) & 0.0 & \cdots & 0.0 & -2.686\times10^{-16} & 5.694\times10^{-18} & 0.0\\0.0 & (-3.128\times10^{-05}-4.971\times10^{-05}j) & 6.250\times10^{-04} & 0.0 & \cdots & 0.0 & -5.325\times10^{-15} & 9.983\times10^{-17} & 0.0\\(-0.025-4.974\times10^{-05}j) & 0.0 & 0.0 & 6.247\times10^{-04} & \cdots & -1.326\times10^{-15} & 0.0 & 0.0 & 1.984\times10^{-17}\\\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots\\5.318\times10^{-14} & 0.0 & 0.0 & -1.326\times10^{-15} & \cdots & -2.021\times10^{-20} & 0.0 & 0.0 & 1.500\times10^{-21}\\0.0 & -2.686\times10^{-16} & -5.325\times10^{-15} & 0.0 & \cdots & 0.0 & -9.225\times10^{-21} & 7.002\times10^{-22} & 0.0\\0.0 & 5.694\times10^{-18} & 9.983\times10^{-17} & 0.0 & \cdots & 0.0 & 7.002\times10^{-22} & -6.962\times10^{-23} & 0.0\\-7.975\times10^{-16} & 0.0 & 0.0 & 1.984\times10^{-17} & \cdots & 1.500\times10^{-21} & 0.0 & 0.0 & -1.126\times10^{-22}\\\end{pmatrix}\end{equation*}
==================== Steadystate expectation values
R_ob: [0.0006269556893884725, 0.0006253905020129923]
R_eb: [0.0006269556893884723, 0.0006253905020129925]
L : [0.0012531197519054977, 0.0012536697716990645]
==================== Dynamics final states
R: [0.00062695568938809533, 0.00062539050201271794]
L: [0.0012531197519057469, 0.0012536697716989808]