In [1]:
from sklearn.datasets import load_digits
In [2]:
digits = load_digits()
X = digits.data
y = digits.target
In [3]:
from sklearn.cross_validation import cross_val_score
from sklearn.svm import LinearSVC
In [6]:
cross_val_score(LinearSVC(), X, y)
Out[6]:
In [7]:
cross_val_score(LinearSVC(), X, y, cv=5, scoring="f1_macro")
Out[7]:
Let's go to a binary task for a moment (even vs uneven)
In [8]:
y % 2
Out[8]:
In [9]:
cross_val_score(LinearSVC(), X, y % 2, scoring="average_precision")
Out[9]:
In [10]:
cross_val_score(LinearSVC(), X, y % 2, scoring="roc_auc")
Out[10]:
There are other ways to do cross-valiation
In [11]:
from sklearn.cross_validation import ShuffleSplit
shuffle_split = ShuffleSplit(len(X), 10, test_size=.4)
cross_val_score(LinearSVC(), X, y, cv=shuffle_split)
Out[11]:
In [ ]: