Methods
Pointwise
Pairwise
RankNet
$$P_{ij}=P(U_{i}\prec U_{j})=\frac{1}{1+e^{-\sigma (s_{i}-s_{j})}}$$
$$C_{ij}=-\bar{P}_{ij}logP_{ij}-(1-\bar{P}_{ij})log(1-P_{ij})$$$$\bar{P}_{ij}=\frac{1}{2}(1+S_{ij})$$$$C_{ij}=\frac{1}{2}(1-S_{ij})\sigma(s_{i}-s_{j})+log(1+e^{-\sigma(s_{i}-s_{j})})$$$$\frac{\partial C}{\partial s_{i}}=\sigma(\frac{1}{2}(1-S_{ij})-\frac{1}{1+e^{\sigma(s_{i}-s_{j})}})=-\frac{\partial C}{\partial s_{j}}=\lambda _{ij}$$
Listwise
LambdaRank
$$\lambda _{ij}=\frac{-\sigma}{1+e^{\sigma(s_{i}-s_{j})}}|\Delta_{NDCG}|$$$$\lambda_{i}=\sum_{j: U_{i}\prec U_{j}}\lambda_{ij}-\sum_{j: U_{j}\prec U_{i}}\lambda_{ij}$$
LambdaMART
MART - Multiple Additive Regression Tree (gradient boosted regression tree)
$$F_{N}(x)=\sum_{i=1}^{N}\alpha _{i}f_{i}(x)$$