In [1]:
import umap
from sklearn.datasets import load_digits
digits = load_digits()
embedding = umap.UMAP().fit_transform(digits.data)
In [2]:
embedding
Out[2]:
In [3]:
embedding.shape
Out[3]:
In [4]:
digits = load_digits()
embedding = umap.UMAP(n_neighbors=5,
min_dist=0.3,
metric='correlation').fit_transform(digits.data)
In [5]:
embedding.shape
Out[5]: