This IPython Notebook illustrates the use of the openmc.mgxs.Library
class. The Library
class is designed to automate the calculation of multi-group cross sections for use cases with one or more domains, cross section types, and/or nuclides. In particular, this Notebook illustrates the following features:
MGXS
with openmc.mgxs.Library
In [1]:
%matplotlib inline
import math
import matplotlib.pyplot as plt
import numpy as np
import openmc
import openmc.mgxs
First we need to define materials that will be used in the problem: fuel, water, and cladding.
In [2]:
# 1.6 enriched fuel
fuel = openmc.Material(name='1.6% Fuel')
fuel.set_density('g/cm3', 10.31341)
fuel.add_nuclide('U235', 3.7503e-4)
fuel.add_nuclide('U238', 2.2625e-2)
fuel.add_nuclide('O16', 4.6007e-2)
# borated water
water = openmc.Material(name='Borated Water')
water.set_density('g/cm3', 0.740582)
water.add_nuclide('H1', 4.9457e-2)
water.add_nuclide('O16', 2.4732e-2)
water.add_nuclide('B10', 8.0042e-6)
# zircaloy
zircaloy = openmc.Material(name='Zircaloy')
zircaloy.set_density('g/cm3', 6.55)
zircaloy.add_nuclide('Zr90', 7.2758e-3)
With our three materials, we can now create a Materials
object that can be exported to an actual XML file.
In [3]:
# Create a materials collection and export to XML
materials = openmc.Materials((fuel, water, zircaloy))
materials.export_to_xml()
Now let's move on to the geometry. This problem will be a square array of fuel pins and control rod guide tubes for which we can use OpenMC's lattice/universe feature. The basic universe will have three regions for the fuel, the clad, and the surrounding coolant. The first step is to create the bounding surfaces for fuel and clad, as well as the outer bounding surfaces of the problem.
In [4]:
# Create cylinders for the fuel and clad
fuel_outer_radius = openmc.ZCylinder(R=0.39218)
clad_outer_radius = openmc.ZCylinder(R=0.45720)
# Create boundary planes to surround the geometry
min_x = openmc.XPlane(x0=-10.71, boundary_type='reflective')
max_x = openmc.XPlane(x0=+10.71, boundary_type='reflective')
min_y = openmc.YPlane(y0=-10.71, boundary_type='reflective')
max_y = openmc.YPlane(y0=+10.71, boundary_type='reflective')
min_z = openmc.ZPlane(z0=-10., boundary_type='reflective')
max_z = openmc.ZPlane(z0=+10., boundary_type='reflective')
With the surfaces defined, we can now construct a fuel pin cell from cells that are defined by intersections of half-spaces created by the surfaces.
In [5]:
# Create a Universe to encapsulate a fuel pin
fuel_pin_universe = openmc.Universe(name='1.6% Fuel Pin')
# Create fuel Cell
fuel_cell = openmc.Cell(name='1.6% Fuel')
fuel_cell.fill = fuel
fuel_cell.region = -fuel_outer_radius
fuel_pin_universe.add_cell(fuel_cell)
# Create a clad Cell
clad_cell = openmc.Cell(name='1.6% Clad')
clad_cell.fill = zircaloy
clad_cell.region = +fuel_outer_radius & -clad_outer_radius
fuel_pin_universe.add_cell(clad_cell)
# Create a moderator Cell
moderator_cell = openmc.Cell(name='1.6% Moderator')
moderator_cell.fill = water
moderator_cell.region = +clad_outer_radius
fuel_pin_universe.add_cell(moderator_cell)
Likewise, we can construct a control rod guide tube with the same surfaces.
In [6]:
# Create a Universe to encapsulate a control rod guide tube
guide_tube_universe = openmc.Universe(name='Guide Tube')
# Create guide tube Cell
guide_tube_cell = openmc.Cell(name='Guide Tube Water')
guide_tube_cell.fill = water
guide_tube_cell.region = -fuel_outer_radius
guide_tube_universe.add_cell(guide_tube_cell)
# Create a clad Cell
clad_cell = openmc.Cell(name='Guide Clad')
clad_cell.fill = zircaloy
clad_cell.region = +fuel_outer_radius & -clad_outer_radius
guide_tube_universe.add_cell(clad_cell)
# Create a moderator Cell
moderator_cell = openmc.Cell(name='Guide Tube Moderator')
moderator_cell.fill = water
moderator_cell.region = +clad_outer_radius
guide_tube_universe.add_cell(moderator_cell)
Using the pin cell universe, we can construct a 17x17 rectangular lattice with a 1.26 cm pitch.
In [7]:
# Create fuel assembly Lattice
assembly = openmc.RectLattice(name='1.6% Fuel Assembly')
assembly.pitch = (1.26, 1.26)
assembly.lower_left = [-1.26 * 17. / 2.0] * 2
Next, we create a NumPy array of fuel pin and guide tube universes for the lattice.
In [8]:
# Create array indices for guide tube locations in lattice
template_x = np.array([5, 8, 11, 3, 13, 2, 5, 8, 11, 14, 2, 5, 8,
11, 14, 2, 5, 8, 11, 14, 3, 13, 5, 8, 11])
template_y = np.array([2, 2, 2, 3, 3, 5, 5, 5, 5, 5, 8, 8, 8, 8,
8, 11, 11, 11, 11, 11, 13, 13, 14, 14, 14])
# Create universes array with the fuel pin and guide tube universes
universes = np.tile(fuel_pin_universe, (17,17))
universes[template_x, template_y] = guide_tube_universe
# Store the array of universes in the lattice
assembly.universes = universes
OpenMC requires that there is a "root" universe. Let us create a root cell that is filled by the pin cell universe and then assign it to the root universe.
In [9]:
# Create root Cell
root_cell = openmc.Cell(name='root cell', fill=assembly)
# Add boundary planes
root_cell.region = +min_x & -max_x & +min_y & -max_y & +min_z & -max_z
# Create root Universe
root_universe = openmc.Universe(universe_id=0, name='root universe')
root_universe.add_cell(root_cell)
We now must create a geometry that is assigned a root universe and export it to XML.
In [10]:
# Create Geometry and export to XML
geometry = openmc.Geometry(root_universe)
geometry.export_to_xml()
With the geometry and materials finished, we now just need to define simulation parameters. In this case, we will use 10 inactive batches and 40 active batches each with 2500 particles.
In [11]:
# OpenMC simulation parameters
batches = 50
inactive = 10
particles = 2500
# Instantiate a Settings object
settings = openmc.Settings()
settings.batches = batches
settings.inactive = inactive
settings.particles = particles
settings.output = {'tallies': False}
# Create an initial uniform spatial source distribution over fissionable zones
bounds = [-10.71, -10.71, -10, 10.71, 10.71, 10.]
uniform_dist = openmc.stats.Box(bounds[:3], bounds[3:], only_fissionable=True)
settings.source = openmc.Source(space=uniform_dist)
# Export to "settings.xml"
settings.export_to_xml()
Let us also create a plot to verify that our fuel assembly geometry was created successfully.
In [12]:
# Plot our geometry
plot = openmc.Plot.from_geometry(geometry)
plot.pixels = (250, 250)
plot.color_by = 'material'
openmc.plot_inline(plot)
As we can see from the plot, we have a nice array of fuel and guide tube pin cells with fuel, cladding, and water!
Now we are ready to generate multi-group cross sections! First, let's define a 20-energy-group and 1-energy-group.
In [13]:
# Instantiate a 20-group EnergyGroups object
energy_groups = openmc.mgxs.EnergyGroups()
energy_groups.group_edges = np.logspace(-3, 7.3, 21)
# Instantiate a 1-group EnergyGroups object
one_group = openmc.mgxs.EnergyGroups()
one_group.group_edges = np.array([energy_groups.group_edges[0], energy_groups.group_edges[-1]])
Next, we will instantiate an openmc.mgxs.Library
for the energy and delayed groups with our the fuel assembly geometry.
In [14]:
# Instantiate a tally mesh
mesh = openmc.Mesh(mesh_id=1)
mesh.type = 'regular'
mesh.dimension = [17, 17, 1]
mesh.lower_left = [-10.71, -10.71, -10000.]
mesh.width = [1.26, 1.26, 20000.]
# Initialize an 20-energy-group and 6-delayed-group MGXS Library
mgxs_lib = openmc.mgxs.Library(geometry)
mgxs_lib.energy_groups = energy_groups
mgxs_lib.num_delayed_groups = 6
# Specify multi-group cross section types to compute
mgxs_lib.mgxs_types = ['total', 'transport', 'nu-scatter matrix', 'kappa-fission', 'inverse-velocity', 'chi-prompt',
'prompt-nu-fission', 'chi-delayed', 'delayed-nu-fission', 'beta']
# Specify a "mesh" domain type for the cross section tally filters
mgxs_lib.domain_type = 'mesh'
# Specify the mesh domain over which to compute multi-group cross sections
mgxs_lib.domains = [mesh]
# Construct all tallies needed for the multi-group cross section library
mgxs_lib.build_library()
# Create a "tallies.xml" file for the MGXS Library
tallies_file = openmc.Tallies()
mgxs_lib.add_to_tallies_file(tallies_file, merge=True)
# Instantiate a current tally
mesh_filter = openmc.MeshFilter(mesh)
current_tally = openmc.Tally(name='current tally')
current_tally.scores = ['current']
current_tally.filters = [mesh_filter]
# Add current tally to the tallies file
tallies_file.append(current_tally)
# Export to "tallies.xml"
tallies_file.export_to_xml()
Now, we can run OpenMC to generate the cross sections.
In [15]:
# Run OpenMC
openmc.run()
Out[15]:
Our simulation ran successfully and created statepoint and summary output files. We begin our analysis by instantiating a StatePoint
object.
In [16]:
# Load the last statepoint file
sp = openmc.StatePoint('statepoint.50.h5')
The statepoint is now ready to be analyzed by the Library
. We simply have to load the tallies from the statepoint into the Library
and our MGXS
objects will compute the cross sections for us under-the-hood.
In [17]:
# Initialize MGXS Library with OpenMC statepoint data
mgxs_lib.load_from_statepoint(sp)
# Extrack the current tally separately
current_tally = sp.get_tally(name='current tally')
Finally, we illustrate how one can leverage OpenMC's tally arithmetic data processing feature with MGXS
objects. The openmc.mgxs
module uses tally arithmetic to compute multi-group cross sections with automated uncertainty propagation. Each MGXS
object includes an xs_tally
attribute which is a "derived" Tally
based on the tallies needed to compute the cross section type of interest. These derived tallies can be used in subsequent tally arithmetic operations. For example, we can use tally artithmetic to compute the delayed neutron precursor concentrations using the Beta
and DelayedNuFissionXS
objects. The delayed neutron precursor concentrations are modeled using the following equations:
In [18]:
# Set the time constants for the delayed precursors (in seconds^-1)
precursor_halflife = np.array([55.6, 24.5, 16.3, 2.37, 0.424, 0.195])
precursor_lambda = math.log(2.0) / precursor_halflife
beta = mgxs_lib.get_mgxs(mesh, 'beta')
# Create a tally object with only the delayed group filter for the time constants
beta_filters = [f for f in beta.xs_tally.filters if type(f) is not openmc.DelayedGroupFilter]
lambda_tally = beta.xs_tally.summation(nuclides=beta.xs_tally.nuclides)
for f in beta_filters:
lambda_tally = lambda_tally.summation(filter_type=type(f), remove_filter=True) * 0. + 1.
# Set the mean of the lambda tally and reshape to account for nuclides and scores
lambda_tally._mean = precursor_lambda
lambda_tally._mean.shape = lambda_tally.std_dev.shape
# Set a total nuclide and lambda score
lambda_tally.nuclides = [openmc.Nuclide(name='total')]
lambda_tally.scores = ['lambda']
delayed_nu_fission = mgxs_lib.get_mgxs(mesh, 'delayed-nu-fission')
# Use tally arithmetic to compute the precursor concentrations
precursor_conc = beta.xs_tally.summation(filter_type=openmc.EnergyFilter, remove_filter=True) * \
delayed_nu_fission.xs_tally.summation(filter_type=openmc.EnergyFilter, remove_filter=True) / lambda_tally
# The difference is a derived tally which can generate Pandas DataFrames for inspection
precursor_conc.get_pandas_dataframe().head(10)
Out[18]:
Another useful feature of the Python API is the ability to extract the surface currents for the interfaces and surfaces of a mesh. We can inspect the currents for the mesh by getting the pandas dataframe.
In [19]:
current_tally.get_pandas_dataframe().head(10)
Out[19]:
In addition to inspecting the data in the tallies by getting the pandas dataframe, we can also plot the tally data on the domain mesh. Below is the delayed neutron fraction tallied in each mesh cell for each delayed group.
In [20]:
# Extract the energy-condensed delayed neutron fraction tally
beta_by_group = beta.get_condensed_xs(one_group).xs_tally.summation(filter_type='energy', remove_filter=True)
beta_by_group.mean.shape = (17, 17, 6)
beta_by_group.mean[beta_by_group.mean == 0] = np.nan
# Plot the betas
plt.figure(figsize=(18,9))
fig = plt.subplot(231)
plt.imshow(beta_by_group.mean[:,:,0], interpolation='none', cmap='jet')
plt.colorbar()
plt.title('Beta - delayed group 1')
fig = plt.subplot(232)
plt.imshow(beta_by_group.mean[:,:,1], interpolation='none', cmap='jet')
plt.colorbar()
plt.title('Beta - delayed group 2')
fig = plt.subplot(233)
plt.imshow(beta_by_group.mean[:,:,2], interpolation='none', cmap='jet')
plt.colorbar()
plt.title('Beta - delayed group 3')
fig = plt.subplot(234)
plt.imshow(beta_by_group.mean[:,:,3], interpolation='none', cmap='jet')
plt.colorbar()
plt.title('Beta - delayed group 4')
fig = plt.subplot(235)
plt.imshow(beta_by_group.mean[:,:,4], interpolation='none', cmap='jet')
plt.colorbar()
plt.title('Beta - delayed group 5')
fig = plt.subplot(236)
plt.imshow(beta_by_group.mean[:,:,5], interpolation='none', cmap='jet')
plt.colorbar()
plt.title('Beta - delayed group 6')
Out[20]: