In [30]:
import sympy as sy
import numpy as np
sy.init_printing(use_latex=True)
In [32]:
T = 120
Tr = 2.2*120
print [Tr/10, Tr/4]
In [33]:
h = 40.0
pc = -1.0/120
pd = np.exp(pc*h)
print pd
In [36]:
s,z = sy.symbols('s, z')
h = sy.symbols('h', positive=True)
F = (16*s+1)/(100*s+1)
H = sy.simplify(F.subs(s, (z-1)/(z*h)))
print H
In [ ]:
In [6]:
p1,p2,p3,p4 = sy.symbols('p1, p2, p3, p4')
sy.expand((z-0.7+sy.I*0.1)*(z-0.7-sy.I*0.1))
In [10]:
B = 0.6*z + 0.5
A = z*(z**2 - 1.9*z + 0.9)
S, R = sy.symbols('S, R')
H_dy = (B/A) / (1 + (B/A)*(S/R))
sy.simplify(H_dy)
Out[10]:
In [13]:
H_dys = sy.simplify(H_dy)
s=sy.latex(H_dys)
print s
In [18]:
H = sy.simplify(z*B/A)
sy.apart(H)
Out[18]:
Set up the state-space model. Make sure it is correct.
In [20]:
Phi = sy.Matrix([[0.9, 0], [0, 1]])
Gamma = sy.Matrix([[1],[1]])
Cm = sy.Matrix([[-10.4, 11.0]])
Htest = Cm*(z*sy.eye(2)-Phi).inv()*Gamma
Htest
Out[20]:
In [21]:
H
Out[21]:
In [26]:
l1, l2 = sy.symbols('l1, l2')
L = sy.Matrix([[l1, l2]])
sy.factor((z*sy.eye(2) - (Phi - Gamma*L)).det(), z)
Out[26]:
In [38]:
sy.simplify(sy.expand((z-0.6+sy.I*0.3)*(z-0.6-sy.I*0.3)))
Out[38]:
In [1]:
%load_ext pymatbridge
In [23]:
%%matlab --size 800,400
%Mean arteriar pressure, automatic anasthesia model
% Plant
G = tf([1], [120 1 0]);
a = 1/100;
b = 1/160;
F0 = zpk([-b], [-a], a/b);
K = 1e-2;
F = K*F0;
Gc = feedback(G*F, 1);
step(Gc, 1000)
In [30]:
%%matlab --size 800,400 -o L,y,t
h = 40.0;
Phi = [0.9 0; 0 1];
Gamma = [1;1];
C = [-10.4 11.0];
D = 0;
sys = ss(Phi, Gamma, C, D, h);
L = place(Phi, Gamma, [0.6+i*0.3 0.6-i*0.3]);
sys_cl = ss(Phi-Gamma*L, Gamma, C, D, h);
[y, t] = step(sys_cl);
In [34]:
import matplotlib.pyplot as plt
%matplotlib inline
plt.figure()
plt.plot(t, y)
Out[34]:
In [ ]:
In [ ]: