Alexander Pitchford (agp1@aber.ac.uk)
Example to demonstrate using the control library to determine control pulses using the ctrlpulseoptim.optimize_pulse function. The (default) L-BFGS-B algorithm is used to optimise the pulse to minimise the fidelity error, which in this case is given by the 'Trace difference' norm.
This in a Symplectic quantum system example, with two coupled oscillators
The user can experiment with the timeslicing, by means of changing the number of timeslots and/or total time for the evolution. Different initial (starting) pulse types can be tried. The initial and final pulses are displayed in a plot
This example assumes that the example-control-pulseoptim-Hadamard has already been tried, and hence explanations in that notebook are not repeated here.
In [1]:
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
import datetime
In [2]:
from qutip import Qobj, identity, sigmax, sigmay, sigmaz, tensor
from qutip.qip import hadamard_transform
import qutip.logging_utils as logging
logger = logging.get_logger()
#Set this to None or logging.WARN for 'quiet' execution
log_level = logging.INFO
#QuTiP control modules
import qutip.control.pulseoptim as cpo
import qutip.control.symplectic as sympl
example_name = 'Symplectic'
In [3]:
#Drift
w1 = 1
w2 = 1
g1 = 0.5
A0 = Qobj(np.array([[w1, 0, g1, 0],
[0, w1, 0, g1],
[g1, 0, w2, 0],
[0, g1, 0, w2]]))
#Control
Ac = Qobj(np.array([[1, 0, 0, 0,], \
[0, 1, 0, 0], \
[0, 0, 0, 0], \
[0, 0, 0, 0]]))
ctrls = [Ac]
n_ctrls = len(ctrls)
initial = identity(4)
# Target
a = 1
Ag = np.array([[0, 0, a, 0],
[0, 0, 0, a],
[a, 0, 0, 0],
[0, a, 0, 0]])
Sg = Qobj(sympl.calc_omega(2).dot(Ag)).expm()
In [4]:
# Number of time slots
n_ts = 1000
# Time allowed for the evolution
evo_time = 10
In [5]:
# Fidelity error target
fid_err_targ = 1e-10
# Maximum iterations for the optisation algorithm
max_iter = 500
# Maximum (elapsed) time allowed in seconds
max_wall_time = 30
# Minimum gradient (sum of gradients squared)
# as this tends to 0 -> local minima has been found
min_grad = 1e-20
In [6]:
# pulse type alternatives: RND|ZERO|LIN|SINE|SQUARE|SAW|TRIANGLE|
p_type = 'ZERO'
In [7]:
#Set to None to suppress output files
f_ext = "{}_n_ts{}_ptype{}.txt".format(example_name, n_ts, p_type)
In [8]:
# Note that this call uses
# dyn_type='SYMPL'
# This means that matrices that describe the dynamics are assumed to be
# Symplectic, i.e. the propagator can be calculated using
# expm(combined_dynamics.omega*dt)
# This has defaults for:
# prop_type='FRECHET'
# therefore the propagators and their gradients will be calculated using the
# Frechet method, i.e. an exact gradient
# fid_type='TRACEDIFF'
# so that the fidelity error, i.e. distance from the target, is give
# by the trace of the difference between the target and evolved operators
result = cpo.optimize_pulse(A0, ctrls, initial, Sg, n_ts, evo_time,
fid_err_targ=fid_err_targ, min_grad=min_grad,
max_iter=max_iter, max_wall_time=max_wall_time,
dyn_type='SYMPL',
out_file_ext=f_ext, init_pulse_type=p_type,
log_level=log_level, gen_stats=True)
In [9]:
result.stats.report()
print("Final evolution\n{}\n".format(result.evo_full_final))
print("********* Summary *****************")
print("Final fidelity error {}".format(result.fid_err))
print("Final gradient normal {}".format(result.grad_norm_final))
print("Terminated due to {}".format(result.termination_reason))
print("Number of iterations {}".format(result.num_iter))
print("Completed in {} HH:MM:SS.US".format(datetime.timedelta(seconds=result.wall_time)))
In [12]:
fig1 = plt.figure()
ax1 = fig1.add_subplot(2, 1, 1)
ax1.set_title("Initial Control amps")
ax1.set_xlabel("Time")
ax1.set_ylabel("Control amplitude")
for j in range(n_ctrls):
ax1.step(result.time,
np.hstack((result.initial_amps[:, j], result.initial_amps[-1, j])),
where='post')
ax2 = fig1.add_subplot(2, 1, 2)
ax2.set_title("Optimised Control Amplitudes")
ax2.set_xlabel("Time")
ax2.set_ylabel("Control amplitude")
for j in range(n_ctrls):
ax2.step(result.time,
np.hstack((result.final_amps[:, j], result.final_amps[-1, j])),
where='post')
plt.tight_layout()
plt.show()
In [11]:
from qutip.ipynbtools import version_table
version_table()
Out[11]: