In [ ]:
%matplotlib inline
In [ ]:
# Author: Erwan Vautier <erwan.vautier@gmail.com>
# Nicolas Courty <ncourty@irisa.fr>
#
# License: MIT License
import scipy as sp
import numpy as np
import matplotlib.pylab as pl
from mpl_toolkits.mplot3d import Axes3D # noqa
import ot
In [ ]:
n_samples = 30 # nb samples
mu_s = np.array([0, 0])
cov_s = np.array([[1, 0], [0, 1]])
mu_t = np.array([4, 4, 4])
cov_t = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
xs = ot.datasets.get_2D_samples_gauss(n_samples, mu_s, cov_s)
P = sp.linalg.sqrtm(cov_t)
xt = np.random.randn(n_samples, 3).dot(P) + mu_t
In [ ]:
fig = pl.figure()
ax1 = fig.add_subplot(121)
ax1.plot(xs[:, 0], xs[:, 1], '+b', label='Source samples')
ax2 = fig.add_subplot(122, projection='3d')
ax2.scatter(xt[:, 0], xt[:, 1], xt[:, 2], color='r')
pl.show()
In [ ]:
C1 = sp.spatial.distance.cdist(xs, xs)
C2 = sp.spatial.distance.cdist(xt, xt)
C1 /= C1.max()
C2 /= C2.max()
pl.figure()
pl.subplot(121)
pl.imshow(C1)
pl.subplot(122)
pl.imshow(C2)
pl.show()
In [ ]:
p = ot.unif(n_samples)
q = ot.unif(n_samples)
gw0, log0 = ot.gromov.gromov_wasserstein(
C1, C2, p, q, 'square_loss', verbose=True, log=True)
gw, log = ot.gromov.entropic_gromov_wasserstein(
C1, C2, p, q, 'square_loss', epsilon=5e-4, log=True, verbose=True)
print('Gromov-Wasserstein distances: ' + str(log0['gw_dist']))
print('Entropic Gromov-Wasserstein distances: ' + str(log['gw_dist']))
pl.figure(1, (10, 5))
pl.subplot(1, 2, 1)
pl.imshow(gw0, cmap='jet')
pl.title('Gromov Wasserstein')
pl.subplot(1, 2, 2)
pl.imshow(gw, cmap='jet')
pl.title('Entropic Gromov Wasserstein')
pl.show()