~~~~~~~~~ BP/CC/MF ~~~~~~~~~~~~~~ EPOCH 1/20 (Embedding dimention: 100) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 4s - loss: 0.5417 - fmeasure: 0.7387 - val_loss: 0.4262 - val_fmeasure: 0.8073
>>> F1-score (1): 0.80753 Best (1): + 0.80753 (0.5 : 0.80753)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 4s - loss: 0.5507 - fmeasure: 0.7328 - val_loss: 0.4151 - val_fmeasure: 0.8243
>>> F1-score (2): 0.8257 Best (2): + 0.8257 (0.5 : 0.8257)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 4s - loss: 0.5635 - fmeasure: 0.7244 - val_loss: 0.4478 - val_fmeasure: 0.7974
>>> F1-score (3): 0.79813 Best (3): + 0.79813 (0.5 : 0.79813)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 4s - loss: 0.5498 - fmeasure: 0.7289 - val_loss: 0.4119 - val_fmeasure: 0.8293
>>> F1-score (4): 0.82992 Best (4): + 0.82992 (0.5 : 0.82992)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 4s - loss: 0.5529 - fmeasure: 0.7309 - val_loss: 0.4357 - val_fmeasure: 0.8065
>>> F1-score (5): 0.80704 Best (5): + 0.80704 (0.5 : 0.80704)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 4s - loss: 0.5491 - fmeasure: 0.7299 - val_loss: 0.4202 - val_fmeasure: 0.8256
>>> F1-score (6): 0.8267 Best (6): + 0.8267 (0.5 : 0.8267)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 4s - loss: 0.5539 - fmeasure: 0.7302 - val_loss: 0.4306 - val_fmeasure: 0.8148
>>> F1-score (7): 0.81512 Best (7): + 0.81512 (0.5 : 0.81512)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 4s - loss: 0.5444 - fmeasure: 0.7339 - val_loss: 0.4284 - val_fmeasure: 0.8118
>>> F1-score (8): 0.81226 Best (8): + 0.81226 (0.5 : 0.81226)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 4s - loss: 0.5545 - fmeasure: 0.7257 - val_loss: 0.4233 - val_fmeasure: 0.8222
>>> F1-score (9): 0.82203 Best (9): + 0.82203 (0.5 : 0.82203)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 4s - loss: 0.5593 - fmeasure: 0.7287 - val_loss: 0.4334 - val_fmeasure: 0.8116
>>> F1-score (10): 0.81185 Best (10): + 0.81185 (0.5 : 0.81185)
F1-score for this epoch: 0.815628 ( 0.5 )-- Best F1-score::==> 0.815628 ( 0.5 ) (for epoch # 1 of 20 epochs)
~~~~~~~~~ BP/CC/MF ~~~~~~~~~~~~~~ EPOCH 2/20 (Embedding dimention: 100) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.4313 - fmeasure: 0.8089 - val_loss: 0.3798 - val_fmeasure: 0.8293
>>> F1-score (1): 0.82934 Best (1): + 0.82934 (0.5 : 0.02181)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.4315 - fmeasure: 0.8073 - val_loss: 0.3759 - val_fmeasure: 0.8391
>>> F1-score (2): 0.84031 Best (2): + 0.84031 (0.5 : 0.01461)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.4369 - fmeasure: 0.8046 - val_loss: 0.4074 - val_fmeasure: 0.8358
>>> F1-score (3): 0.83632 Best (3): + 0.83632 (0.5 : 0.03819)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.4350 - fmeasure: 0.8052 - val_loss: 0.3623 - val_fmeasure: 0.8484
>>> F1-score (4): 0.84885 Best (4): + 0.84885 (0.5 : 0.01893)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.4407 - fmeasure: 0.8021 - val_loss: 0.4067 - val_fmeasure: 0.8269
>>> F1-score (5): 0.82769 Best (5): + 0.82769 (0.5 : 0.02065)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.4356 - fmeasure: 0.8074 - val_loss: 0.3928 - val_fmeasure: 0.8398
>>> F1-score (6): 0.84022 Best (6): + 0.84022 (0.5 : 0.01352)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.4389 - fmeasure: 0.8016 - val_loss: 0.4057 - val_fmeasure: 0.8278
>>> F1-score (7): 0.82829 Best (7): + 0.82829 (0.5 : 0.01317)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.4364 - fmeasure: 0.8031 - val_loss: 0.3938 - val_fmeasure: 0.8259
>>> F1-score (8): 0.82614 Best (8): + 0.82614 (0.5 : 0.01388)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.4374 - fmeasure: 0.8038 - val_loss: 0.3721 - val_fmeasure: 0.8409
>>> F1-score (9): 0.84089 Best (9): + 0.84089 (0.5 : 0.01886)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.4365 - fmeasure: 0.8041 - val_loss: 0.3872 - val_fmeasure: 0.8348
>>> F1-score (10): 0.83491 Best (10): + 0.83491 (0.5 : 0.02306)
F1-score for this epoch: 0.835296 ( 0.5 )-- Best F1-score::==> 0.835296 ( 0.5 ) (for epoch # 2 of 20 epochs)
~~~~~~~~~ BP/CC/MF ~~~~~~~~~~~~~~ EPOCH 3/20 (Embedding dimention: 100) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3869 - fmeasure: 0.8346 - val_loss: 0.3454 - val_fmeasure: 0.8523
>>> F1-score (1): 0.85255 Best (1): + 0.85255 (0.5 : 0.02321)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3879 - fmeasure: 0.8329 - val_loss: 0.3500 - val_fmeasure: 0.8573
>>> F1-score (2): 0.85846 Best (2): + 0.85846 (0.5 : 0.01815)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3895 - fmeasure: 0.8309 - val_loss: 0.3770 - val_fmeasure: 0.8542
>>> F1-score (3): 0.85488 Best (3): + 0.85488 (0.5 : 0.01856)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3923 - fmeasure: 0.8288 - val_loss: 0.3484 - val_fmeasure: 0.8624
>>> F1-score (4): 0.86241 Best (4): + 0.86241 (0.5 : 0.01356)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3923 - fmeasure: 0.8304 - val_loss: 0.3614 - val_fmeasure: 0.8438
>>> F1-score (5): 0.84448 Best (5): + 0.84448 (0.5 : 0.01679)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3905 - fmeasure: 0.8296 - val_loss: 0.3357 - val_fmeasure: 0.8655
>>> F1-score (6): 0.86633 Best (6): + 0.86633 (0.5 : 0.02611)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3932 - fmeasure: 0.8295 - val_loss: 0.3509 - val_fmeasure: 0.8499
>>> F1-score (7): 0.85012 Best (7): + 0.85012 (0.5 : 0.02183)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3886 - fmeasure: 0.8302 - val_loss: 0.3699 - val_fmeasure: 0.8557
>>> F1-score (8): 0.85617 Best (8): + 0.85617 (0.5 : 0.03003)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3927 - fmeasure: 0.8305 - val_loss: 0.3713 - val_fmeasure: 0.8512
>>> F1-score (9): 0.85146 Best (9): + 0.85146 (0.5 : 0.01057)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3929 - fmeasure: 0.8291 - val_loss: 0.3568 - val_fmeasure: 0.8586
>>> F1-score (10): 0.8587 Best (10): + 0.8587 (0.5 : 0.02379)
F1-score for this epoch: 0.855556 ( 0.5 )-- Best F1-score::==> 0.855556 ( 0.5 ) (for epoch # 3 of 20 epochs)
~~~~~~~~~ BP/CC/MF ~~~~~~~~~~~~~~ EPOCH 4/20 (Embedding dimention: 100) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3586 - fmeasure: 0.8486 - val_loss: 0.3418 - val_fmeasure: 0.8588
>>> F1-score (1): 0.8592 Best (1): + 0.8592 (0.5 : 0.00665)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3579 - fmeasure: 0.8491 - val_loss: 0.3273 - val_fmeasure: 0.8584
>>> F1-score (2): 0.85951 Best (2): + 0.85951 (0.5 : 0.00105)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3576 - fmeasure: 0.8489 - val_loss: 0.3505 - val_fmeasure: 0.8599
>>> F1-score (3): 0.86059 Best (3): + 0.86059 (0.5 : 0.00571)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3609 - fmeasure: 0.8473 - val_loss: 0.3143 - val_fmeasure: 0.8755
>>> F1-score (4): 0.87562 Best (4): + 0.87562 (0.5 : 0.01321)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3631 - fmeasure: 0.8452 - val_loss: 0.3429 - val_fmeasure: 0.8582
>>> F1-score (5): 0.85884 Best (5): + 0.85884 (0.5 : 0.01436)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3614 - fmeasure: 0.8465 - val_loss: 0.3163 - val_fmeasure: 0.8733
>>> F1-score (6): 0.87346 Best (6): + 0.87346 (0.5 : 0.00713)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3621 - fmeasure: 0.8480 - val_loss: 0.3299 - val_fmeasure: 0.8630
>>> F1-score (7): 0.86327 Best (7): + 0.86327 (0.5 : 0.01315)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3613 - fmeasure: 0.8469 - val_loss: 0.3325 - val_fmeasure: 0.8660
>>> F1-score (8): 0.86659 Best (8): + 0.86659 (0.5 : 0.01042)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3615 - fmeasure: 0.8465 - val_loss: 0.3359 - val_fmeasure: 0.8687
>>> F1-score (9): 0.86889 Best (9): + 0.86889 (0.5 : 0.01743)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3621 - fmeasure: 0.8450 - val_loss: 0.3395 - val_fmeasure: 0.8664
>>> F1-score (10): 0.86657 Best (10): + 0.86657 (0.5 : 0.00787)
F1-score for this epoch: 0.865254 ( 0.5 )-- Best F1-score::==> 0.865254 ( 0.5 ) (for epoch # 4 of 20 epochs)
~~~~~~~~~ BP/CC/MF ~~~~~~~~~~~~~~ EPOCH 5/20 (Embedding dimention: 100) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3360 - fmeasure: 0.8608 - val_loss: 0.3079 - val_fmeasure: 0.8697
>>> F1-score (1): 0.87036 Best (1): + 0.87036 (0.5 : 0.01116)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3348 - fmeasure: 0.8608 - val_loss: 0.3155 - val_fmeasure: 0.8688
>>> F1-score (2): 0.86982 Best (2): + 0.86982 (0.5 : 0.01031)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3330 - fmeasure: 0.8617 - val_loss: 0.3325 - val_fmeasure: 0.8645
>>> F1-score (3): 0.86503 Best (3): + 0.86503 (0.5 : 0.00444)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3356 - fmeasure: 0.8590 - val_loss: 0.3016 - val_fmeasure: 0.8807
>>> F1-score (4): 0.88044 Best (4): + 0.88044 (0.5 : 0.00482)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3350 - fmeasure: 0.8594 - val_loss: 0.3240 - val_fmeasure: 0.8629
>>> F1-score (5): 0.86341 Best (5): + 0.86341 (0.5 : 0.00457)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3356 - fmeasure: 0.8581 - val_loss: 0.2990 - val_fmeasure: 0.8780
>>> F1-score (6): 0.87881 Best (6): + 0.87881 (0.5 : 0.00535)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3365 - fmeasure: 0.8590 - val_loss: 0.3128 - val_fmeasure: 0.8713
>>> F1-score (7): 0.87156 Best (7): + 0.87156 (0.5 : 0.00829)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3356 - fmeasure: 0.8598 - val_loss: 0.3229 - val_fmeasure: 0.8626
>>> F1-score (8): 0.86327 Best (8): - 0.86659 (0.5 : -0.00332)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3397 - fmeasure: 0.8576 - val_loss: 0.3226 - val_fmeasure: 0.8732
>>> F1-score (9): 0.87352 Best (9): + 0.87352 (0.5 : 0.00463)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3375 - fmeasure: 0.8591 - val_loss: 0.3257 - val_fmeasure: 0.8757
>>> F1-score (10): 0.87601 Best (10): + 0.87601 (0.5 : 0.00944)
F1-score for this epoch: 0.871223 ( 0.5 )-- Best F1-score::==> 0.871223 ( 0.5 ) (for epoch # 5 of 20 epochs)
~~~~~~~~~ BP/CC/MF ~~~~~~~~~~~~~~ EPOCH 6/20 (Embedding dimention: 100) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3169 - fmeasure: 0.8697 - val_loss: 0.2973 - val_fmeasure: 0.8811
>>> F1-score (1): 0.88169 Best (1): + 0.88169 (0.5 : 0.01133)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3141 - fmeasure: 0.8701 - val_loss: 0.3009 - val_fmeasure: 0.8774
>>> F1-score (2): 0.87826 Best (2): + 0.87826 (0.5 : 0.00844)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3155 - fmeasure: 0.8680 - val_loss: 0.3364 - val_fmeasure: 0.8729
>>> F1-score (3): 0.87342 Best (3): + 0.87342 (0.5 : 0.00839)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3166 - fmeasure: 0.8700 - val_loss: 0.2952 - val_fmeasure: 0.8838
>>> F1-score (4): 0.88352 Best (4): + 0.88352 (0.5 : 0.00308)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3164 - fmeasure: 0.8693 - val_loss: 0.3122 - val_fmeasure: 0.8764
>>> F1-score (5): 0.87689 Best (5): + 0.87689 (0.5 : 0.01348)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3162 - fmeasure: 0.8701 - val_loss: 0.2830 - val_fmeasure: 0.8849
>>> F1-score (6): 0.88591 Best (6): + 0.88591 (0.5 : 0.0071)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3157 - fmeasure: 0.8708 - val_loss: 0.2953 - val_fmeasure: 0.8714
>>> F1-score (7): 0.8717 Best (7): + 0.8717 (0.5 : 0.00014)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3174 - fmeasure: 0.8686 - val_loss: 0.3022 - val_fmeasure: 0.8808
>>> F1-score (8): 0.88129 Best (8): + 0.88129 (0.5 : 0.0147)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3185 - fmeasure: 0.8666 - val_loss: 0.3097 - val_fmeasure: 0.8803
>>> F1-score (9): 0.88045 Best (9): + 0.88045 (0.5 : 0.00693)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3186 - fmeasure: 0.8684 - val_loss: 0.3073 - val_fmeasure: 0.8807
>>> F1-score (10): 0.88089 Best (10): + 0.88089 (0.5 : 0.00488)
F1-score for this epoch: 0.879402 ( 0.5 )-- Best F1-score::==> 0.879402 ( 0.5 ) (for epoch # 6 of 20 epochs)
~~~~~~~~~ BP/CC/MF ~~~~~~~~~~~~~~ EPOCH 7/20 (Embedding dimention: 100) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2993 - fmeasure: 0.8783 - val_loss: 0.2884 - val_fmeasure: 0.8759
>>> F1-score (1): 0.87624 Best (1): - 0.88169 (0.5 : -0.00545)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2976 - fmeasure: 0.8786 - val_loss: 0.2932 - val_fmeasure: 0.8769
>>> F1-score (2): 0.87786 Best (2): - 0.87826 (0.5 : -0.0004)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2987 - fmeasure: 0.8782 - val_loss: 0.3174 - val_fmeasure: 0.8761
>>> F1-score (3): 0.87667 Best (3): + 0.87667 (0.5 : 0.00325)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3014 - fmeasure: 0.8768 - val_loss: 0.2659 - val_fmeasure: 0.8972
>>> F1-score (4): 0.89663 Best (4): + 0.89663 (0.5 : 0.01311)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2999 - fmeasure: 0.8756 - val_loss: 0.3078 - val_fmeasure: 0.8785
>>> F1-score (5): 0.879 Best (5): + 0.879 (0.5 : 0.00211)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3003 - fmeasure: 0.8768 - val_loss: 0.2732 - val_fmeasure: 0.8939
>>> F1-score (6): 0.8944 Best (6): + 0.8944 (0.5 : 0.00849)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2984 - fmeasure: 0.8789 - val_loss: 0.2869 - val_fmeasure: 0.8814
>>> F1-score (7): 0.88173 Best (7): + 0.88173 (0.5 : 0.01003)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3020 - fmeasure: 0.8755 - val_loss: 0.2964 - val_fmeasure: 0.8777
>>> F1-score (8): 0.87799 Best (8): - 0.88129 (0.5 : -0.0033)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3000 - fmeasure: 0.8773 - val_loss: 0.2998 - val_fmeasure: 0.8809
>>> F1-score (9): 0.88136 Best (9): + 0.88136 (0.5 : 0.00091)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.3008 - fmeasure: 0.8780 - val_loss: 0.2994 - val_fmeasure: 0.8734
>>> F1-score (10): 0.87332 Best (10): - 0.88089 (0.5 : -0.00757)
F1-score for this epoch: 0.88152 ( 0.5 )-- Best F1-score::==> 0.88152 ( 0.5 ) (for epoch # 7 of 20 epochs)
~~~~~~~~~ BP/CC/MF ~~~~~~~~~~~~~~ EPOCH 8/20 (Embedding dimention: 100) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2839 - fmeasure: 0.8840 - val_loss: 0.2806 - val_fmeasure: 0.8865
>>> F1-score (1): 0.88682 Best (1): + 0.88682 (0.5 : 0.00513)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2841 - fmeasure: 0.8848 - val_loss: 0.2942 - val_fmeasure: 0.8826
>>> F1-score (2): 0.88336 Best (2): + 0.88336 (0.5 : 0.0051)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2840 - fmeasure: 0.8844 - val_loss: 0.3011 - val_fmeasure: 0.8761
>>> F1-score (3): 0.8769 Best (3): + 0.8769 (0.5 : 0.00023)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2855 - fmeasure: 0.8843 - val_loss: 0.2584 - val_fmeasure: 0.8977
>>> F1-score (4): 0.89717 Best (4): + 0.89717 (0.5 : 0.00054)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2833 - fmeasure: 0.8844 - val_loss: 0.2907 - val_fmeasure: 0.8847
>>> F1-score (5): 0.885 Best (5): + 0.885 (0.5 : 0.006)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2871 - fmeasure: 0.8839 - val_loss: 0.2688 - val_fmeasure: 0.8934
>>> F1-score (6): 0.89416 Best (6): - 0.8944 (0.5 : -0.00024)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2865 - fmeasure: 0.8840 - val_loss: 0.2851 - val_fmeasure: 0.8814
>>> F1-score (7): 0.88166 Best (7): - 0.88173 (0.5 : -7e-05)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2867 - fmeasure: 0.8832 - val_loss: 0.2886 - val_fmeasure: 0.8854
>>> F1-score (8): 0.88603 Best (8): + 0.88603 (0.5 : 0.00474)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2859 - fmeasure: 0.8838 - val_loss: 0.2905 - val_fmeasure: 0.8878
>>> F1-score (9): 0.88808 Best (9): + 0.88808 (0.5 : 0.00672)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2847 - fmeasure: 0.8849 - val_loss: 0.2832 - val_fmeasure: 0.8905
>>> F1-score (10): 0.89068 Best (10): + 0.89068 (0.5 : 0.00979)
F1-score for this epoch: 0.886986 ( 0.5 )-- Best F1-score::==> 0.886986 ( 0.5 ) (for epoch # 8 of 20 epochs)
~~~~~~~~~ BP/CC/MF ~~~~~~~~~~~~~~ EPOCH 9/20 (Embedding dimention: 100) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2721 - fmeasure: 0.8912 - val_loss: 0.2709 - val_fmeasure: 0.8947
>>> F1-score (1): 0.89504 Best (1): + 0.89504 (0.5 : 0.00822)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 4s - loss: 0.2732 - fmeasure: 0.8896 - val_loss: 0.2793 - val_fmeasure: 0.8875
>>> F1-score (2): 0.88837 Best (2): + 0.88837 (0.5 : 0.00501)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 4s - loss: 0.2727 - fmeasure: 0.8905 - val_loss: 0.2960 - val_fmeasure: 0.8813
>>> F1-score (3): 0.88179 Best (3): + 0.88179 (0.5 : 0.00489)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2725 - fmeasure: 0.8910 - val_loss: 0.2509 - val_fmeasure: 0.9010
>>> F1-score (4): 0.9006 Best (4): + 0.9006 (0.5 : 0.00343)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2703 - fmeasure: 0.8916 - val_loss: 0.2855 - val_fmeasure: 0.8854
>>> F1-score (5): 0.88579 Best (5): + 0.88579 (0.5 : 0.00079)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2739 - fmeasure: 0.8891 - val_loss: 0.2605 - val_fmeasure: 0.8991
>>> F1-score (6): 0.89976 Best (6): + 0.89976 (0.5 : 0.00536)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2743 - fmeasure: 0.8903 - val_loss: 0.2742 - val_fmeasure: 0.8833
>>> F1-score (7): 0.8834 Best (7): + 0.8834 (0.5 : 0.00167)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2744 - fmeasure: 0.8898 - val_loss: 0.2834 - val_fmeasure: 0.8930
>>> F1-score (8): 0.89358 Best (8): + 0.89358 (0.5 : 0.00755)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2727 - fmeasure: 0.8890 - val_loss: 0.2827 - val_fmeasure: 0.8923
>>> F1-score (9): 0.89247 Best (9): + 0.89247 (0.5 : 0.00439)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2736 - fmeasure: 0.8896 - val_loss: 0.2768 - val_fmeasure: 0.8966
>>> F1-score (10): 0.89692 Best (10): + 0.89692 (0.5 : 0.00624)
F1-score for this epoch: 0.891772 ( 0.5 )-- Best F1-score::==> 0.891772 ( 0.5 ) (for epoch # 9 of 20 epochs)
~~~~~~~~~ BP/CC/MF ~~~~~~~~~~~~~~ EPOCH 10/20 (Embedding dimention: 100) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2609 - fmeasure: 0.8944 - val_loss: 0.2656 - val_fmeasure: 0.8894
>>> F1-score (1): 0.88964 Best (1): - 0.89504 (0.5 : -0.0054)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2609 - fmeasure: 0.8945 - val_loss: 0.2730 - val_fmeasure: 0.8896
>>> F1-score (2): 0.89022 Best (2): + 0.89022 (0.5 : 0.00185)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2593 - fmeasure: 0.8950 - val_loss: 0.3012 - val_fmeasure: 0.8832
>>> F1-score (3): 0.88379 Best (3): + 0.88379 (0.5 : 0.002)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2556 - fmeasure: 0.8985 - val_loss: 0.2461 - val_fmeasure: 0.9040
>>> F1-score (4): 0.90376 Best (4): + 0.90376 (0.5 : 0.00316)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2578 - fmeasure: 0.8960 - val_loss: 0.2877 - val_fmeasure: 0.8896
>>> F1-score (5): 0.88994 Best (5): + 0.88994 (0.5 : 0.00415)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2629 - fmeasure: 0.8944 - val_loss: 0.2640 - val_fmeasure: 0.9029
>>> F1-score (6): 0.90338 Best (6): + 0.90338 (0.5 : 0.00362)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 4s - loss: 0.2608 - fmeasure: 0.8959 - val_loss: 0.2682 - val_fmeasure: 0.8872
>>> F1-score (7): 0.88736 Best (7): + 0.88736 (0.5 : 0.00396)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 4s - loss: 0.2637 - fmeasure: 0.8937 - val_loss: 0.2679 - val_fmeasure: 0.8920
>>> F1-score (8): 0.89244 Best (8): - 0.89358 (0.5 : -0.00114)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2578 - fmeasure: 0.8973 - val_loss: 0.2811 - val_fmeasure: 0.8926
>>> F1-score (9): 0.89262 Best (9): + 0.89262 (0.5 : 0.00015)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 4s - loss: 0.2625 - fmeasure: 0.8955 - val_loss: 0.2785 - val_fmeasure: 0.8924
>>> F1-score (10): 0.89275 Best (10): - 0.89692 (0.5 : -0.00417)
F1-score for this epoch: 0.89259 ( 0.5 )-- Best F1-score::==> 0.89259 ( 0.5 ) (for epoch # 10 of 20 epochs)
~~~~~~~~~ BP/CC/MF ~~~~~~~~~~~~~~ EPOCH 11/20 (Embedding dimention: 100) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 4s - loss: 0.2515 - fmeasure: 0.8995 - val_loss: 0.2641 - val_fmeasure: 0.8975
>>> F1-score (1): 0.89786 Best (1): + 0.89786 (0.5 : 0.00282)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 4s - loss: 0.2501 - fmeasure: 0.9006 - val_loss: 0.2706 - val_fmeasure: 0.8895
>>> F1-score (2): 0.89011 Best (2): - 0.89022 (0.5 : -0.00011)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 4s - loss: 0.2492 - fmeasure: 0.8993 - val_loss: 0.2793 - val_fmeasure: 0.8865
>>> F1-score (3): 0.88682 Best (3): + 0.88682 (0.5 : 0.00303)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 4s - loss: 0.2503 - fmeasure: 0.9008 - val_loss: 0.2377 - val_fmeasure: 0.9080
>>> F1-score (4): 0.9078 Best (4): + 0.9078 (0.5 : 0.00404)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2476 - fmeasure: 0.9019 - val_loss: 0.2755 - val_fmeasure: 0.8947
>>> F1-score (5): 0.89496 Best (5): + 0.89496 (0.5 : 0.00502)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 4s - loss: 0.2505 - fmeasure: 0.9006 - val_loss: 0.2528 - val_fmeasure: 0.8974
>>> F1-score (6): 0.89813 Best (6): - 0.90338 (0.5 : -0.00525)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 4s - loss: 0.2509 - fmeasure: 0.9011 - val_loss: 0.2638 - val_fmeasure: 0.8916
>>> F1-score (7): 0.8919 Best (7): + 0.8919 (0.5 : 0.00454)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 4s - loss: 0.2536 - fmeasure: 0.8982 - val_loss: 0.2698 - val_fmeasure: 0.8978
>>> F1-score (8): 0.89851 Best (8): + 0.89851 (0.5 : 0.00493)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 4s - loss: 0.2496 - fmeasure: 0.8997 - val_loss: 0.2815 - val_fmeasure: 0.8974
>>> F1-score (9): 0.89757 Best (9): + 0.89757 (0.5 : 0.00495)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2490 - fmeasure: 0.9010 - val_loss: 0.2663 - val_fmeasure: 0.8950
>>> F1-score (10): 0.89507 Best (10): - 0.89692 (0.5 : -0.00185)
F1-score for this epoch: 0.895873 ( 0.5 )-- Best F1-score::==> 0.895873 ( 0.5 ) (for epoch # 11 of 20 epochs)
~~~~~~~~~ BP/CC/MF ~~~~~~~~~~~~~~ EPOCH 12/20 (Embedding dimention: 100) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 4s - loss: 0.2429 - fmeasure: 0.9036 - val_loss: 0.2529 - val_fmeasure: 0.8975
>>> F1-score (1): 0.8978 Best (1): - 0.89786 (0.5 : -6e-05)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2395 - fmeasure: 0.9043 - val_loss: 0.2652 - val_fmeasure: 0.8976
>>> F1-score (2): 0.89807 Best (2): + 0.89807 (0.5 : 0.00785)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2387 - fmeasure: 0.9056 - val_loss: 0.2855 - val_fmeasure: 0.8868
>>> F1-score (3): 0.88722 Best (3): + 0.88722 (0.5 : 0.0004)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2399 - fmeasure: 0.9044 - val_loss: 0.2435 - val_fmeasure: 0.9018
>>> F1-score (4): 0.90152 Best (4): - 0.9078 (0.5 : -0.00628)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2398 - fmeasure: 0.9053 - val_loss: 0.2751 - val_fmeasure: 0.8897
>>> F1-score (5): 0.89012 Best (5): - 0.89496 (0.5 : -0.00484)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2412 - fmeasure: 0.9041 - val_loss: 0.2508 - val_fmeasure: 0.9007
>>> F1-score (6): 0.9013 Best (6): - 0.90338 (0.5 : -0.00208)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2382 - fmeasure: 0.9055 - val_loss: 0.2783 - val_fmeasure: 0.8801
>>> F1-score (7): 0.88044 Best (7): - 0.8919 (0.5 : -0.01146)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2419 - fmeasure: 0.9031 - val_loss: 0.2606 - val_fmeasure: 0.9019
>>> F1-score (8): 0.90255 Best (8): + 0.90255 (0.5 : 0.00404)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2406 - fmeasure: 0.9054 - val_loss: 0.2770 - val_fmeasure: 0.8975
>>> F1-score (9): 0.89755 Best (9): - 0.89757 (0.5 : -2e-05)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2389 - fmeasure: 0.9058 - val_loss: 0.2621 - val_fmeasure: 0.8978
>>> F1-score (10): 0.89797 Best (10): + 0.89797 (0.5 : 0.00105)
F1-score for this epoch: 0.895454 ( 0.5 )-- Best F1-score::==> 0.895873 ( 0.5 ) (for epoch # 11 of 20 epochs)
~~~~~~~~~ BP/CC/MF ~~~~~~~~~~~~~~ EPOCH 13/20 (Embedding dimention: 100) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2329 - fmeasure: 0.9079 - val_loss: 0.2565 - val_fmeasure: 0.8951
>>> F1-score (1): 0.89516 Best (1): - 0.89786 (0.5 : -0.0027)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2316 - fmeasure: 0.9093 - val_loss: 0.2628 - val_fmeasure: 0.8986
>>> F1-score (2): 0.89922 Best (2): + 0.89922 (0.5 : 0.00115)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2321 - fmeasure: 0.9076 - val_loss: 0.2763 - val_fmeasure: 0.8937
>>> F1-score (3): 0.89409 Best (3): + 0.89409 (0.5 : 0.00687)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2298 - fmeasure: 0.9097 - val_loss: 0.2360 - val_fmeasure: 0.9082
>>> F1-score (4): 0.90775 Best (4): - 0.9078 (0.5 : -5e-05)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 4s - loss: 0.2321 - fmeasure: 0.9084 - val_loss: 0.2712 - val_fmeasure: 0.8963
>>> F1-score (5): 0.89642 Best (5): + 0.89642 (0.5 : 0.00146)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2329 - fmeasure: 0.9082 - val_loss: 0.2427 - val_fmeasure: 0.9074
>>> F1-score (6): 0.90806 Best (6): + 0.90806 (0.5 : 0.00468)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2333 - fmeasure: 0.9075 - val_loss: 0.2528 - val_fmeasure: 0.8976
>>> F1-score (7): 0.89763 Best (7): + 0.89763 (0.5 : 0.00573)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2336 - fmeasure: 0.9080 - val_loss: 0.2573 - val_fmeasure: 0.9001
>>> F1-score (8): 0.90049 Best (8): - 0.90255 (0.5 : -0.00206)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2312 - fmeasure: 0.9082 - val_loss: 0.2740 - val_fmeasure: 0.8973
>>> F1-score (9): 0.89751 Best (9): - 0.89757 (0.5 : -6e-05)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2322 - fmeasure: 0.9087 - val_loss: 0.2586 - val_fmeasure: 0.9002
>>> F1-score (10): 0.90045 Best (10): + 0.90045 (0.5 : 0.00248)
F1-score for this epoch: 0.899678 ( 0.5 )-- Best F1-score::==> 0.899678 ( 0.5 ) (for epoch # 13 of 20 epochs)
~~~~~~~~~ BP/CC/MF ~~~~~~~~~~~~~~ EPOCH 14/20 (Embedding dimention: 100) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2273 - fmeasure: 0.9106 - val_loss: 0.2454 - val_fmeasure: 0.9027
>>> F1-score (1): 0.90297 Best (1): + 0.90297 (0.5 : 0.00511)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2221 - fmeasure: 0.9118 - val_loss: 0.2727 - val_fmeasure: 0.8915
>>> F1-score (2): 0.89229 Best (2): - 0.89922 (0.5 : -0.00693)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 4s - loss: 0.2243 - fmeasure: 0.9121 - val_loss: 0.2803 - val_fmeasure: 0.8929
>>> F1-score (3): 0.89335 Best (3): - 0.89409 (0.5 : -0.00074)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2227 - fmeasure: 0.9107 - val_loss: 0.2390 - val_fmeasure: 0.9082
>>> F1-score (4): 0.90803 Best (4): + 0.90803 (0.5 : 0.00023)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 4s - loss: 0.2211 - fmeasure: 0.9131 - val_loss: 0.2637 - val_fmeasure: 0.8998
>>> F1-score (5): 0.90003 Best (5): + 0.90003 (0.5 : 0.00361)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2235 - fmeasure: 0.9119 - val_loss: 0.2452 - val_fmeasure: 0.9009
>>> F1-score (6): 0.90194 Best (6): - 0.90806 (0.5 : -0.00612)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2228 - fmeasure: 0.9132 - val_loss: 0.2524 - val_fmeasure: 0.8985
>>> F1-score (7): 0.89864 Best (7): + 0.89864 (0.5 : 0.00101)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2254 - fmeasure: 0.9120 - val_loss: 0.2500 - val_fmeasure: 0.9108
>>> F1-score (8): 0.91146 Best (8): + 0.91146 (0.5 : 0.00891)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2251 - fmeasure: 0.9111 - val_loss: 0.2705 - val_fmeasure: 0.8975
>>> F1-score (9): 0.89762 Best (9): + 0.89762 (0.5 : 5e-05)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2243 - fmeasure: 0.9103 - val_loss: 0.2569 - val_fmeasure: 0.8978
>>> F1-score (10): 0.898 Best (10): - 0.90045 (0.5 : -0.00245)
F1-score for this epoch: 0.900433 ( 0.5 )-- Best F1-score::==> 0.900433 ( 0.5 ) (for epoch # 14 of 20 epochs)
~~~~~~~~~ BP/CC/MF ~~~~~~~~~~~~~~ EPOCH 15/20 (Embedding dimention: 100) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2197 - fmeasure: 0.9133 - val_loss: 0.2466 - val_fmeasure: 0.9033
>>> F1-score (1): 0.9036 Best (1): + 0.9036 (0.5 : 0.00063)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2147 - fmeasure: 0.9147 - val_loss: 0.2541 - val_fmeasure: 0.9062
>>> F1-score (2): 0.90666 Best (2): + 0.90666 (0.5 : 0.00744)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2133 - fmeasure: 0.9162 - val_loss: 0.2772 - val_fmeasure: 0.8993
>>> F1-score (3): 0.89968 Best (3): + 0.89968 (0.5 : 0.00559)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2166 - fmeasure: 0.9144 - val_loss: 0.2307 - val_fmeasure: 0.9155
>>> F1-score (4): 0.91543 Best (4): + 0.91543 (0.5 : 0.0074)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2147 - fmeasure: 0.9153 - val_loss: 0.2709 - val_fmeasure: 0.9027
>>> F1-score (5): 0.90296 Best (5): + 0.90296 (0.5 : 0.00293)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2184 - fmeasure: 0.9130 - val_loss: 0.2447 - val_fmeasure: 0.9092
>>> F1-score (6): 0.90973 Best (6): + 0.90973 (0.5 : 0.00167)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2159 - fmeasure: 0.9165 - val_loss: 0.2489 - val_fmeasure: 0.8993
>>> F1-score (7): 0.8996 Best (7): + 0.8996 (0.5 : 0.00096)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2197 - fmeasure: 0.9145 - val_loss: 0.2527 - val_fmeasure: 0.9088
>>> F1-score (8): 0.90931 Best (8): - 0.91146 (0.5 : -0.00215)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2156 - fmeasure: 0.9151 - val_loss: 0.2717 - val_fmeasure: 0.8996
>>> F1-score (9): 0.89984 Best (9): + 0.89984 (0.5 : 0.00222)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2185 - fmeasure: 0.9142 - val_loss: 0.2550 - val_fmeasure: 0.9010
>>> F1-score (10): 0.90111 Best (10): + 0.90111 (0.5 : 0.00066)
F1-score for this epoch: 0.904792 ( 0.5 )-- Best F1-score::==> 0.904792 ( 0.5 ) (for epoch # 15 of 20 epochs)
~~~~~~~~~ BP/CC/MF ~~~~~~~~~~~~~~ EPOCH 16/20 (Embedding dimention: 100) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2099 - fmeasure: 0.9167 - val_loss: 0.2420 - val_fmeasure: 0.9074
>>> F1-score (1): 0.90756 Best (1): + 0.90756 (0.5 : 0.00396)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2117 - fmeasure: 0.9160 - val_loss: 0.2600 - val_fmeasure: 0.9000
>>> F1-score (2): 0.90058 Best (2): - 0.90666 (0.5 : -0.00608)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2085 - fmeasure: 0.9183 - val_loss: 0.2758 - val_fmeasure: 0.8974
>>> F1-score (3): 0.8979 Best (3): - 0.89968 (0.5 : -0.00178)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2087 - fmeasure: 0.9181 - val_loss: 0.2309 - val_fmeasure: 0.9113
>>> F1-score (4): 0.91115 Best (4): - 0.91543 (0.5 : -0.00428)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 4s - loss: 0.2076 - fmeasure: 0.9174 - val_loss: 0.2698 - val_fmeasure: 0.9021
>>> F1-score (5): 0.90233 Best (5): - 0.90296 (0.5 : -0.00063)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2110 - fmeasure: 0.9165 - val_loss: 0.2385 - val_fmeasure: 0.9043
>>> F1-score (6): 0.90488 Best (6): - 0.90973 (0.5 : -0.00485)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2102 - fmeasure: 0.9168 - val_loss: 0.2514 - val_fmeasure: 0.9001
>>> F1-score (7): 0.90024 Best (7): + 0.90024 (0.5 : 0.00064)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2115 - fmeasure: 0.9173 - val_loss: 0.2630 - val_fmeasure: 0.8949
>>> F1-score (8): 0.89521 Best (8): - 0.91146 (0.5 : -0.01625)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2076 - fmeasure: 0.9188 - val_loss: 0.2676 - val_fmeasure: 0.9047
>>> F1-score (9): 0.9049 Best (9): + 0.9049 (0.5 : 0.00506)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2086 - fmeasure: 0.9178 - val_loss: 0.2573 - val_fmeasure: 0.9043
>>> F1-score (10): 0.90448 Best (10): + 0.90448 (0.5 : 0.00337)
F1-score for this epoch: 0.902923 ( 0.5 )-- Best F1-score::==> 0.904792 ( 0.5 ) (for epoch # 15 of 20 epochs)
~~~~~~~~~ BP/CC/MF ~~~~~~~~~~~~~~ EPOCH 17/20 (Embedding dimention: 100) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2052 - fmeasure: 0.9200 - val_loss: 0.2360 - val_fmeasure: 0.9072
>>> F1-score (1): 0.9074 Best (1): - 0.90756 (0.5 : -0.00016)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2045 - fmeasure: 0.9200 - val_loss: 0.2488 - val_fmeasure: 0.9072
>>> F1-score (2): 0.90758 Best (2): + 0.90758 (0.5 : 0.00092)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2026 - fmeasure: 0.9202 - val_loss: 0.2756 - val_fmeasure: 0.8978
>>> F1-score (3): 0.89819 Best (3): - 0.89968 (0.5 : -0.00149)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2024 - fmeasure: 0.9220 - val_loss: 0.2298 - val_fmeasure: 0.9139
>>> F1-score (4): 0.91383 Best (4): - 0.91543 (0.5 : -0.0016)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2008 - fmeasure: 0.9219 - val_loss: 0.2613 - val_fmeasure: 0.9011
>>> F1-score (5): 0.90157 Best (5): - 0.90296 (0.5 : -0.00139)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2055 - fmeasure: 0.9190 - val_loss: 0.2347 - val_fmeasure: 0.9121
>>> F1-score (6): 0.9128 Best (6): + 0.9128 (0.5 : 0.00307)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2040 - fmeasure: 0.9191 - val_loss: 0.2454 - val_fmeasure: 0.9010
>>> F1-score (7): 0.90136 Best (7): + 0.90136 (0.5 : 0.00112)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2082 - fmeasure: 0.9169 - val_loss: 0.2547 - val_fmeasure: 0.9063
>>> F1-score (8): 0.90697 Best (8): - 0.91146 (0.5 : -0.00449)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2004 - fmeasure: 0.9204 - val_loss: 0.2667 - val_fmeasure: 0.9024
>>> F1-score (9): 0.90253 Best (9): - 0.9049 (0.5 : -0.00237)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.2031 - fmeasure: 0.9208 - val_loss: 0.2474 - val_fmeasure: 0.9041
>>> F1-score (10): 0.90445 Best (10): - 0.90448 (0.5 : -3e-05)
F1-score for this epoch: 0.905668 ( 0.5 )-- Best F1-score::==> 0.905668 ( 0.5 ) (for epoch # 17 of 20 epochs)
~~~~~~~~~ BP/CC/MF ~~~~~~~~~~~~~~ EPOCH 18/20 (Embedding dimention: 100) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 4s - loss: 0.1979 - fmeasure: 0.9234 - val_loss: 0.2447 - val_fmeasure: 0.9067
>>> F1-score (1): 0.90711 Best (1): - 0.90756 (0.5 : -0.00045)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 4s - loss: 0.1973 - fmeasure: 0.9225 - val_loss: 0.2671 - val_fmeasure: 0.9052
>>> F1-score (2): 0.90546 Best (2): - 0.90758 (0.5 : -0.00212)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 4s - loss: 0.1961 - fmeasure: 0.9244 - val_loss: 0.2785 - val_fmeasure: 0.9009
>>> F1-score (3): 0.90109 Best (3): + 0.90109 (0.5 : 0.00141)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.1973 - fmeasure: 0.9224 - val_loss: 0.2273 - val_fmeasure: 0.9104
>>> F1-score (4): 0.91076 Best (4): - 0.91543 (0.5 : -0.00467)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.1955 - fmeasure: 0.9238 - val_loss: 0.2620 - val_fmeasure: 0.9011
>>> F1-score (5): 0.90161 Best (5): - 0.90296 (0.5 : -0.00135)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.1977 - fmeasure: 0.9225 - val_loss: 0.2406 - val_fmeasure: 0.9084
>>> F1-score (6): 0.9092 Best (6): - 0.9128 (0.5 : -0.0036)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.1982 - fmeasure: 0.9234 - val_loss: 0.2446 - val_fmeasure: 0.9028
>>> F1-score (7): 0.90315 Best (7): + 0.90315 (0.5 : 0.00179)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.1990 - fmeasure: 0.9217 - val_loss: 0.2397 - val_fmeasure: 0.9108
>>> F1-score (8): 0.91134 Best (8): - 0.91146 (0.5 : -0.00012)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.1960 - fmeasure: 0.9234 - val_loss: 0.2740 - val_fmeasure: 0.9026
>>> F1-score (9): 0.90296 Best (9): - 0.9049 (0.5 : -0.00194)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.1956 - fmeasure: 0.9230 - val_loss: 0.2505 - val_fmeasure: 0.9061
>>> F1-score (10): 0.90616 Best (10): + 0.90616 (0.5 : 0.00168)
F1-score for this epoch: 0.905884 ( 0.5 )-- Best F1-score::==> 0.905884 ( 0.5 ) (for epoch # 18 of 20 epochs)
~~~~~~~~~ BP/CC/MF ~~~~~~~~~~~~~~ EPOCH 19/20 (Embedding dimention: 100) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.1939 - fmeasure: 0.9244 - val_loss: 0.2317 - val_fmeasure: 0.9081
>>> F1-score (1): 0.90849 Best (1): + 0.90849 (0.5 : 0.00093)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.1921 - fmeasure: 0.9247 - val_loss: 0.2503 - val_fmeasure: 0.9082
>>> F1-score (2): 0.90882 Best (2): + 0.90882 (0.5 : 0.00124)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.1924 - fmeasure: 0.9236 - val_loss: 0.2682 - val_fmeasure: 0.9006
>>> F1-score (3): 0.90107 Best (3): - 0.90109 (0.5 : -2e-05)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.1909 - fmeasure: 0.9247 - val_loss: 0.2337 - val_fmeasure: 0.9107
>>> F1-score (4): 0.9109 Best (4): - 0.91543 (0.5 : -0.00453)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.1897 - fmeasure: 0.9268 - val_loss: 0.2659 - val_fmeasure: 0.9051
>>> F1-score (5): 0.90524 Best (5): + 0.90524 (0.5 : 0.00228)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.1933 - fmeasure: 0.9248 - val_loss: 0.2341 - val_fmeasure: 0.9114
>>> F1-score (6): 0.91194 Best (6): - 0.9128 (0.5 : -0.00086)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.1921 - fmeasure: 0.9254 - val_loss: 0.2490 - val_fmeasure: 0.9019
>>> F1-score (7): 0.90219 Best (7): - 0.90315 (0.5 : -0.00096)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.1937 - fmeasure: 0.9249 - val_loss: 0.2459 - val_fmeasure: 0.9087
>>> F1-score (8): 0.90936 Best (8): - 0.91146 (0.5 : -0.0021)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.1914 - fmeasure: 0.9248 - val_loss: 0.2681 - val_fmeasure: 0.9053
>>> F1-score (9): 0.90564 Best (9): + 0.90564 (0.5 : 0.00074)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.1937 - fmeasure: 0.9245 - val_loss: 0.2504 - val_fmeasure: 0.9010
>>> F1-score (10): 0.90108 Best (10): - 0.90616 (0.5 : -0.00508)
F1-score for this epoch: 0.906473 ( 0.5 )-- Best F1-score::==> 0.906473 ( 0.5 ) (for epoch # 19 of 20 epochs)
~~~~~~~~~ BP/CC/MF ~~~~~~~~~~~~~~ EPOCH 20/20 (Embedding dimention: 100) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.1878 - fmeasure: 0.9268 - val_loss: 0.2380 - val_fmeasure: 0.9097
>>> F1-score (1): 0.90998 Best (1): + 0.90998 (0.5 : 0.00149)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.1852 - fmeasure: 0.9289 - val_loss: 0.2524 - val_fmeasure: 0.9065
>>> F1-score (2): 0.90698 Best (2): - 0.90882 (0.5 : -0.00184)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.1853 - fmeasure: 0.9286 - val_loss: 0.2806 - val_fmeasure: 0.9003
>>> F1-score (3): 0.90085 Best (3): - 0.90109 (0.5 : -0.00024)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.1842 - fmeasure: 0.9277 - val_loss: 0.2379 - val_fmeasure: 0.9110
>>> F1-score (4): 0.91095 Best (4): - 0.91543 (0.5 : -0.00448)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.1867 - fmeasure: 0.9276 - val_loss: 0.2625 - val_fmeasure: 0.9024
>>> F1-score (5): 0.90309 Best (5): - 0.90524 (0.5 : -0.00215)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.1860 - fmeasure: 0.9274 - val_loss: 0.2459 - val_fmeasure: 0.9125
>>> F1-score (6): 0.91301 Best (6): + 0.91301 (0.5 : 0.00021)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.1855 - fmeasure: 0.9285 - val_loss: 0.2443 - val_fmeasure: 0.9027
>>> F1-score (7): 0.90321 Best (7): + 0.90321 (0.5 : 6e-05)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.1907 - fmeasure: 0.9257 - val_loss: 0.2352 - val_fmeasure: 0.9151
>>> F1-score (8): 0.91546 Best (8): + 0.91546 (0.5 : 0.004)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.1838 - fmeasure: 0.9279 - val_loss: 0.2596 - val_fmeasure: 0.9057
>>> F1-score (9): 0.90602 Best (9): + 0.90602 (0.5 : 0.00038)
Train on 59322 samples, validate on 3295 samples
Epoch 1/1
59322/59322 [==============================] - 3s - loss: 0.1878 - fmeasure: 0.9282 - val_loss: 0.2464 - val_fmeasure: 0.9032
>>> F1-score (10): 0.90336 Best (10): - 0.90616 (0.5 : -0.0028)
F1-score for this epoch: 0.907291 ( 0.5 )-- Best F1-score::==> 0.907291 ( 0.5 ) (for epoch # 20 of 20 epochs)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ FINAL RESULT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For embedding size '100' best number of epochs is '20' with F1-score of: 0.907291