Chapter 10 – Introduction to Artificial Neural Networks

This notebook contains all the sample code and solutions to the exercises in chapter 10.

Setup

First, let's make sure this notebook works well in both python 2 and 3, import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures:


In [1]:
# To support both python 2 and python 3
from __future__ import division, print_function, unicode_literals

# Common imports
import numpy as np
import os

# to make this notebook's output stable across runs
def reset_graph(seed=42):
    tf.reset_default_graph()
    tf.set_random_seed(seed)
    np.random.seed(seed)

# To plot pretty figures
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
plt.rcParams['axes.labelsize'] = 14
plt.rcParams['xtick.labelsize'] = 12
plt.rcParams['ytick.labelsize'] = 12

# Where to save the figures
PROJECT_ROOT_DIR = "."
CHAPTER_ID = "ann"

def save_fig(fig_id, tight_layout=True):
    path = os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID, fig_id + ".png")
    print("Saving figure", fig_id)
    if tight_layout:
        plt.tight_layout()
    plt.savefig(path, format='png', dpi=300)

Perceptrons

Note: we set max_iter and tol explicitly to avoid warnings about the fact that their default value will change in future versions of Scikit-Learn.


In [2]:
import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import Perceptron

iris = load_iris()
X = iris.data[:, (2, 3)]  # petal length, petal width
y = (iris.target == 0).astype(np.int)

per_clf = Perceptron(max_iter=100, tol=-np.infty, random_state=42)
per_clf.fit(X, y)

y_pred = per_clf.predict([[2, 0.5]])

In [3]:
y_pred


Out[3]:
array([1])

In [4]:
a = -per_clf.coef_[0][0] / per_clf.coef_[0][1]
b = -per_clf.intercept_ / per_clf.coef_[0][1]

axes = [0, 5, 0, 2]

x0, x1 = np.meshgrid(
        np.linspace(axes[0], axes[1], 500).reshape(-1, 1),
        np.linspace(axes[2], axes[3], 200).reshape(-1, 1),
    )
X_new = np.c_[x0.ravel(), x1.ravel()]
y_predict = per_clf.predict(X_new)
zz = y_predict.reshape(x0.shape)

plt.figure(figsize=(10, 4))
plt.plot(X[y==0, 0], X[y==0, 1], "bs", label="Not Iris-Setosa")
plt.plot(X[y==1, 0], X[y==1, 1], "yo", label="Iris-Setosa")

plt.plot([axes[0], axes[1]], [a * axes[0] + b, a * axes[1] + b], "k-", linewidth=3)
from matplotlib.colors import ListedColormap
custom_cmap = ListedColormap(['#9898ff', '#fafab0'])

plt.contourf(x0, x1, zz, cmap=custom_cmap)
plt.xlabel("Petal length", fontsize=14)
plt.ylabel("Petal width", fontsize=14)
plt.legend(loc="lower right", fontsize=14)
plt.axis(axes)

save_fig("perceptron_iris_plot")
plt.show()


Saving figure perceptron_iris_plot

Activation functions


In [5]:
def sigmoid(z):
    return 1 / (1 + np.exp(-z))

def relu(z):
    return np.maximum(0, z)

def derivative(f, z, eps=0.000001):
    return (f(z + eps) - f(z - eps))/(2 * eps)

In [6]:
z = np.linspace(-5, 5, 200)

plt.figure(figsize=(11,4))

plt.subplot(121)
plt.plot(z, np.sign(z), "r-", linewidth=1, label="Step")
plt.plot(z, sigmoid(z), "g--", linewidth=2, label="Sigmoid")
plt.plot(z, np.tanh(z), "b-", linewidth=2, label="Tanh")
plt.plot(z, relu(z), "m-.", linewidth=2, label="ReLU")
plt.grid(True)
plt.legend(loc="center right", fontsize=14)
plt.title("Activation functions", fontsize=14)
plt.axis([-5, 5, -1.2, 1.2])

plt.subplot(122)
plt.plot(z, derivative(np.sign, z), "r-", linewidth=1, label="Step")
plt.plot(0, 0, "ro", markersize=5)
plt.plot(0, 0, "rx", markersize=10)
plt.plot(z, derivative(sigmoid, z), "g--", linewidth=2, label="Sigmoid")
plt.plot(z, derivative(np.tanh, z), "b-", linewidth=2, label="Tanh")
plt.plot(z, derivative(relu, z), "m-.", linewidth=2, label="ReLU")
plt.grid(True)
#plt.legend(loc="center right", fontsize=14)
plt.title("Derivatives", fontsize=14)
plt.axis([-5, 5, -0.2, 1.2])

save_fig("activation_functions_plot")
plt.show()


Saving figure activation_functions_plot

In [7]:
def heaviside(z):
    return (z >= 0).astype(z.dtype)

def mlp_xor(x1, x2, activation=heaviside):
    return activation(-activation(x1 + x2 - 1.5) + activation(x1 + x2 - 0.5) - 0.5)

In [8]:
x1s = np.linspace(-0.2, 1.2, 100)
x2s = np.linspace(-0.2, 1.2, 100)
x1, x2 = np.meshgrid(x1s, x2s)

z1 = mlp_xor(x1, x2, activation=heaviside)
z2 = mlp_xor(x1, x2, activation=sigmoid)

plt.figure(figsize=(10,4))

plt.subplot(121)
plt.contourf(x1, x2, z1)
plt.plot([0, 1], [0, 1], "gs", markersize=20)
plt.plot([0, 1], [1, 0], "y^", markersize=20)
plt.title("Activation function: heaviside", fontsize=14)
plt.grid(True)

plt.subplot(122)
plt.contourf(x1, x2, z2)
plt.plot([0, 1], [0, 1], "gs", markersize=20)
plt.plot([0, 1], [1, 0], "y^", markersize=20)
plt.title("Activation function: sigmoid", fontsize=14)
plt.grid(True)


FNN for MNIST

Using the Estimator API (formerly tf.contrib.learn)


In [9]:
import tensorflow as tf

Warning: tf.examples.tutorials.mnist is deprecated. We will use tf.keras.datasets.mnist instead. Moreover, the tf.contrib.learn API was promoted to tf.estimators and tf.feature_columns, and it has changed considerably. In particular, there is no infer_real_valued_columns_from_input() function or SKCompat class.


In [10]:
(X_train, y_train), (X_test, y_test) = tf.keras.datasets.mnist.load_data()
X_train = X_train.astype(np.float32).reshape(-1, 28*28) / 255.0
X_test = X_test.astype(np.float32).reshape(-1, 28*28) / 255.0
y_train = y_train.astype(np.int32)
y_test = y_test.astype(np.int32)
X_valid, X_train = X_train[:5000], X_train[5000:]
y_valid, y_train = y_train[:5000], y_train[5000:]

In [11]:
feature_cols = [tf.feature_column.numeric_column("X", shape=[28 * 28])]
dnn_clf = tf.estimator.DNNClassifier(hidden_units=[300,100], n_classes=10,
                                     feature_columns=feature_cols)

input_fn = tf.estimator.inputs.numpy_input_fn(
    x={"X": X_train}, y=y_train, num_epochs=40, batch_size=50, shuffle=True)
dnn_clf.train(input_fn=input_fn)


INFO:tensorflow:Using default config.
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpuflzeb_h
INFO:tensorflow:Using config: {'_evaluation_master': '', '_session_config': None, '_model_dir': '/tmp/tmpuflzeb_h', '_task_type': 'worker', '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x7f4fcb4e15c0>, '_save_summary_steps': 100, '_is_chief': True, '_save_checkpoints_steps': None, '_log_step_count_steps': 100, '_master': '', '_service': None, '_keep_checkpoint_every_n_hours': 10000, '_task_id': 0, '_tf_random_seed': None, '_num_ps_replicas': 0, '_global_id_in_cluster': 0, '_train_distribute': None, '_num_worker_replicas': 1, '_save_checkpoints_secs': 600, '_keep_checkpoint_max': 5}
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Saving checkpoints for 1 into /tmp/tmpuflzeb_h/model.ckpt.
INFO:tensorflow:loss = 122.883514, step = 0
INFO:tensorflow:global_step/sec: 480.267
INFO:tensorflow:loss = 9.599711, step = 100 (0.209 sec)
INFO:tensorflow:global_step/sec: 599.191
INFO:tensorflow:loss = 19.580772, step = 200 (0.167 sec)
INFO:tensorflow:global_step/sec: 640.184
INFO:tensorflow:loss = 2.1866307, step = 300 (0.157 sec)
INFO:tensorflow:global_step/sec: 716.395
INFO:tensorflow:loss = 11.493204, step = 400 (0.138 sec)
INFO:tensorflow:global_step/sec: 713.653
INFO:tensorflow:loss = 4.0078278, step = 500 (0.140 sec)
INFO:tensorflow:global_step/sec: 722.021
INFO:tensorflow:loss = 10.612131, step = 600 (0.139 sec)
INFO:tensorflow:global_step/sec: 669.446
INFO:tensorflow:loss = 6.692636, step = 700 (0.149 sec)
INFO:tensorflow:global_step/sec: 720.49
INFO:tensorflow:loss = 4.2058306, step = 800 (0.139 sec)
INFO:tensorflow:global_step/sec: 766.548
INFO:tensorflow:loss = 9.13055, step = 900 (0.130 sec)
INFO:tensorflow:global_step/sec: 773.506
INFO:tensorflow:loss = 4.1445055, step = 1000 (0.129 sec)
INFO:tensorflow:global_step/sec: 755.713
INFO:tensorflow:loss = 8.442559, step = 1100 (0.132 sec)
INFO:tensorflow:global_step/sec: 762.721
INFO:tensorflow:loss = 1.4401194, step = 1200 (0.131 sec)
<<821 more lines>>
INFO:tensorflow:loss = 0.021663003, step = 42300 (0.127 sec)
INFO:tensorflow:global_step/sec: 763.347
INFO:tensorflow:loss = 0.011599571, step = 42400 (0.131 sec)
INFO:tensorflow:global_step/sec: 762.321
INFO:tensorflow:loss = 0.0044469903, step = 42500 (0.131 sec)
INFO:tensorflow:global_step/sec: 768.549
INFO:tensorflow:loss = 0.0019147585, step = 42600 (0.130 sec)
INFO:tensorflow:global_step/sec: 771.429
INFO:tensorflow:loss = 0.0054854164, step = 42700 (0.130 sec)
INFO:tensorflow:global_step/sec: 793.871
INFO:tensorflow:loss = 0.0017117725, step = 42800 (0.126 sec)
INFO:tensorflow:global_step/sec: 770.1
INFO:tensorflow:loss = 0.012048513, step = 42900 (0.130 sec)
INFO:tensorflow:global_step/sec: 744.636
INFO:tensorflow:loss = 0.06634566, step = 43000 (0.134 sec)
INFO:tensorflow:global_step/sec: 696.882
INFO:tensorflow:loss = 0.0003919307, step = 43100 (0.144 sec)
INFO:tensorflow:global_step/sec: 705.516
INFO:tensorflow:loss = 0.06582007, step = 43200 (0.141 sec)
INFO:tensorflow:global_step/sec: 699.244
INFO:tensorflow:loss = 0.0038124803, step = 43300 (0.143 sec)
INFO:tensorflow:global_step/sec: 792.079
INFO:tensorflow:loss = 0.003364585, step = 43400 (0.126 sec)
INFO:tensorflow:global_step/sec: 753.586
INFO:tensorflow:loss = 0.00725976, step = 43500 (0.133 sec)
INFO:tensorflow:global_step/sec: 720.951
INFO:tensorflow:loss = 0.024148291, step = 43600 (0.139 sec)
INFO:tensorflow:global_step/sec: 770.384
INFO:tensorflow:loss = 0.013779048, step = 43700 (0.130 sec)
INFO:tensorflow:global_step/sec: 799.363
INFO:tensorflow:loss = 0.014951154, step = 43800 (0.125 sec)
INFO:tensorflow:global_step/sec: 791.774
INFO:tensorflow:loss = 0.0015594304, step = 43900 (0.126 sec)
INFO:tensorflow:Saving checkpoints for 44000 into /tmp/tmpuflzeb_h/model.ckpt.
INFO:tensorflow:Loss for final step: 0.0012097486.
Out[11]:
<tensorflow.python.estimator.canned.dnn.DNNClassifier at 0x7f4f62b23be0>

In [12]:
test_input_fn = tf.estimator.inputs.numpy_input_fn(
    x={"X": X_test}, y=y_test, shuffle=False)
eval_results = dnn_clf.evaluate(input_fn=test_input_fn)


INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2018-05-18-19:12:49
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmpuflzeb_h/model.ckpt-44000
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Finished evaluation at 2018-05-18-19:12:50
INFO:tensorflow:Saving dict for global step 44000: accuracy = 0.9798, average_loss = 0.10096103, global_step = 44000, loss = 12.779877

In [13]:
eval_results


Out[13]:
{'accuracy': 0.9798,
 'average_loss': 0.10096103,
 'global_step': 44000,
 'loss': 12.779877}

In [14]:
y_pred_iter = dnn_clf.predict(input_fn=test_input_fn)
y_pred = list(y_pred_iter)
y_pred[0]


INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmpuflzeb_h/model.ckpt-44000
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
Out[14]:
{'class_ids': array([7]),
 'classes': array([b'7'], dtype=object),
 'logits': array([ -3.809414 ,  -4.1564407,  -0.426081 ,   3.2636993, -11.065331 ,
         -8.790985 , -10.436305 ,  19.935707 ,  -6.9282775,   2.2807484],
       dtype=float32),
 'probabilities': array([4.8710768e-11, 3.4428106e-11, 1.4354495e-09, 5.7469666e-08,
        3.4389070e-14, 3.3431518e-13, 6.4506329e-14, 1.0000000e+00,
        2.1533745e-12, 2.1505466e-08], dtype=float32)}

Using plain TensorFlow


In [15]:
import tensorflow as tf

n_inputs = 28*28  # MNIST
n_hidden1 = 300
n_hidden2 = 100
n_outputs = 10

In [16]:
reset_graph()

X = tf.placeholder(tf.float32, shape=(None, n_inputs), name="X")
y = tf.placeholder(tf.int32, shape=(None), name="y")

In [17]:
def neuron_layer(X, n_neurons, name, activation=None):
    with tf.name_scope(name):
        n_inputs = int(X.get_shape()[1])
        stddev = 2 / np.sqrt(n_inputs)
        init = tf.truncated_normal((n_inputs, n_neurons), stddev=stddev)
        W = tf.Variable(init, name="kernel")
        b = tf.Variable(tf.zeros([n_neurons]), name="bias")
        Z = tf.matmul(X, W) + b
        if activation is not None:
            return activation(Z)
        else:
            return Z

In [18]:
with tf.name_scope("dnn"):
    hidden1 = neuron_layer(X, n_hidden1, name="hidden1",
                           activation=tf.nn.relu)
    hidden2 = neuron_layer(hidden1, n_hidden2, name="hidden2",
                           activation=tf.nn.relu)
    logits = neuron_layer(hidden2, n_outputs, name="outputs")

In [19]:
with tf.name_scope("loss"):
    xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y,
                                                              logits=logits)
    loss = tf.reduce_mean(xentropy, name="loss")

In [20]:
learning_rate = 0.01

with tf.name_scope("train"):
    optimizer = tf.train.GradientDescentOptimizer(learning_rate)
    training_op = optimizer.minimize(loss)

In [21]:
with tf.name_scope("eval"):
    correct = tf.nn.in_top_k(logits, y, 1)
    accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))

In [22]:
init = tf.global_variables_initializer()
saver = tf.train.Saver()

In [23]:
n_epochs = 40
batch_size = 50

In [24]:
def shuffle_batch(X, y, batch_size):
    rnd_idx = np.random.permutation(len(X))
    n_batches = len(X) // batch_size
    for batch_idx in np.array_split(rnd_idx, n_batches):
        X_batch, y_batch = X[batch_idx], y[batch_idx]
        yield X_batch, y_batch

In [25]:
with tf.Session() as sess:
    init.run()
    for epoch in range(n_epochs):
        for X_batch, y_batch in shuffle_batch(X_train, y_train, batch_size):
            sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
        acc_batch = accuracy.eval(feed_dict={X: X_batch, y: y_batch})
        acc_val = accuracy.eval(feed_dict={X: X_valid, y: y_valid})
        print(epoch, "Batch accuracy:", acc_batch, "Val accuracy:", acc_val)

    save_path = saver.save(sess, "./my_model_final.ckpt")


0 Batch accuracy: 0.9 Val accuracy: 0.9146
1 Batch accuracy: 0.92 Val accuracy: 0.936
2 Batch accuracy: 0.96 Val accuracy: 0.945
3 Batch accuracy: 0.92 Val accuracy: 0.9512
4 Batch accuracy: 0.98 Val accuracy: 0.9558
5 Batch accuracy: 0.96 Val accuracy: 0.9566
6 Batch accuracy: 1.0 Val accuracy: 0.9612
7 Batch accuracy: 0.94 Val accuracy: 0.963
8 Batch accuracy: 0.98 Val accuracy: 0.9652
9 Batch accuracy: 0.96 Val accuracy: 0.966
10 Batch accuracy: 0.92 Val accuracy: 0.9688
11 Batch accuracy: 0.98 Val accuracy: 0.969
12 Batch accuracy: 0.98 Val accuracy: 0.967
13 Batch accuracy: 0.98 Val accuracy: 0.9706
14 Batch accuracy: 1.0 Val accuracy: 0.9714
15 Batch accuracy: 0.94 Val accuracy: 0.9732
16 Batch accuracy: 1.0 Val accuracy: 0.9736
17 Batch accuracy: 1.0 Val accuracy: 0.9742
18 Batch accuracy: 1.0 Val accuracy: 0.9746
19 Batch accuracy: 0.98 Val accuracy: 0.9748
20 Batch accuracy: 1.0 Val accuracy: 0.9752
21 Batch accuracy: 1.0 Val accuracy: 0.9752
22 Batch accuracy: 0.98 Val accuracy: 0.9764
23 Batch accuracy: 0.98 Val accuracy: 0.9752
24 Batch accuracy: 0.98 Val accuracy: 0.9772
25 Batch accuracy: 1.0 Val accuracy: 0.977
26 Batch accuracy: 0.98 Val accuracy: 0.9778
27 Batch accuracy: 1.0 Val accuracy: 0.9774
28 Batch accuracy: 0.96 Val accuracy: 0.9754
29 Batch accuracy: 0.98 Val accuracy: 0.9776
30 Batch accuracy: 1.0 Val accuracy: 0.9756
31 Batch accuracy: 0.98 Val accuracy: 0.9772
32 Batch accuracy: 0.98 Val accuracy: 0.9772
33 Batch accuracy: 0.98 Val accuracy: 0.979
34 Batch accuracy: 1.0 Val accuracy: 0.9784
35 Batch accuracy: 1.0 Val accuracy: 0.9778
36 Batch accuracy: 0.98 Val accuracy: 0.978
37 Batch accuracy: 1.0 Val accuracy: 0.9776
38 Batch accuracy: 1.0 Val accuracy: 0.9792
39 Batch accuracy: 1.0 Val accuracy: 0.9776

In [26]:
with tf.Session() as sess:
    saver.restore(sess, "./my_model_final.ckpt") # or better, use save_path
    X_new_scaled = X_test[:20]
    Z = logits.eval(feed_dict={X: X_new_scaled})
    y_pred = np.argmax(Z, axis=1)


INFO:tensorflow:Restoring parameters from ./my_model_final.ckpt

In [27]:
print("Predicted classes:", y_pred)
print("Actual classes:   ", y_test[:20])


Predicted classes: [7 2 1 0 4 1 4 9 5 9 0 6 9 0 1 5 9 7 3 4]
Actual classes:    [7 2 1 0 4 1 4 9 5 9 0 6 9 0 1 5 9 7 3 4]

In [28]:
from tensorflow_graph_in_jupyter import show_graph

In [29]:
show_graph(tf.get_default_graph())


Using dense() instead of neuron_layer()

Note: previous releases of the book used tensorflow.contrib.layers.fully_connected() rather than tf.layers.dense() (which did not exist when this chapter was written). It is now preferable to use tf.layers.dense(), because anything in the contrib module may change or be deleted without notice. The dense() function is almost identical to the fully_connected() function, except for a few minor differences:

  • several parameters are renamed: scope becomes name, activation_fn becomes activation (and similarly the _fn suffix is removed from other parameters such as normalizer_fn), weights_initializer becomes kernel_initializer, etc.
  • the default activation is now None rather than tf.nn.relu.
  • a few more differences are presented in chapter 11.

In [30]:
n_inputs = 28*28  # MNIST
n_hidden1 = 300
n_hidden2 = 100
n_outputs = 10

In [31]:
reset_graph()

X = tf.placeholder(tf.float32, shape=(None, n_inputs), name="X")
y = tf.placeholder(tf.int32, shape=(None), name="y")

In [32]:
with tf.name_scope("dnn"):
    hidden1 = tf.layers.dense(X, n_hidden1, name="hidden1",
                              activation=tf.nn.relu)
    hidden2 = tf.layers.dense(hidden1, n_hidden2, name="hidden2",
                              activation=tf.nn.relu)
    logits = tf.layers.dense(hidden2, n_outputs, name="outputs")
    y_proba = tf.nn.softmax(logits)

In [33]:
with tf.name_scope("loss"):
    xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)
    loss = tf.reduce_mean(xentropy, name="loss")

In [34]:
learning_rate = 0.01

with tf.name_scope("train"):
    optimizer = tf.train.GradientDescentOptimizer(learning_rate)
    training_op = optimizer.minimize(loss)

In [35]:
with tf.name_scope("eval"):
    correct = tf.nn.in_top_k(logits, y, 1)
    accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))

In [36]:
init = tf.global_variables_initializer()
saver = tf.train.Saver()

In [37]:
n_epochs = 20
n_batches = 50

with tf.Session() as sess:
    init.run()
    for epoch in range(n_epochs):
        for X_batch, y_batch in shuffle_batch(X_train, y_train, batch_size):
            sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
        acc_batch = accuracy.eval(feed_dict={X: X_batch, y: y_batch})
        acc_valid = accuracy.eval(feed_dict={X: X_valid, y: y_valid})
        print(epoch, "Batch accuracy:", acc_batch, "Validation accuracy:", acc_valid)

    save_path = saver.save(sess, "./my_model_final.ckpt")


0 Batch accuracy: 0.9 Validation accuracy: 0.9024
1 Batch accuracy: 0.92 Validation accuracy: 0.9254
2 Batch accuracy: 0.94 Validation accuracy: 0.9372
3 Batch accuracy: 0.9 Validation accuracy: 0.9416
4 Batch accuracy: 0.94 Validation accuracy: 0.9472
5 Batch accuracy: 0.94 Validation accuracy: 0.9512
6 Batch accuracy: 1.0 Validation accuracy: 0.9548
7 Batch accuracy: 0.94 Validation accuracy: 0.961
8 Batch accuracy: 0.96 Validation accuracy: 0.962
9 Batch accuracy: 0.94 Validation accuracy: 0.9648
10 Batch accuracy: 0.92 Validation accuracy: 0.9656
11 Batch accuracy: 0.98 Validation accuracy: 0.9668
12 Batch accuracy: 0.98 Validation accuracy: 0.9684
13 Batch accuracy: 0.98 Validation accuracy: 0.9702
14 Batch accuracy: 1.0 Validation accuracy: 0.9696
15 Batch accuracy: 0.94 Validation accuracy: 0.9718
16 Batch accuracy: 0.98 Validation accuracy: 0.9728
17 Batch accuracy: 1.0 Validation accuracy: 0.973
18 Batch accuracy: 0.98 Validation accuracy: 0.9748
19 Batch accuracy: 0.98 Validation accuracy: 0.9756

In [38]:
show_graph(tf.get_default_graph())


Exercise solutions

1. to 8.

See appendix A.

9.

Train a deep MLP on the MNIST dataset and see if you can get over 98% precision. Just like in the last exercise of chapter 9, try adding all the bells and whistles (i.e., save checkpoints, restore the last checkpoint in case of an interruption, add summaries, plot learning curves using TensorBoard, and so on).

First let's create the deep net. It's exactly the same as earlier, with just one addition: we add a tf.summary.scalar() to track the loss and the accuracy during training, so we can view nice learning curves using TensorBoard.


In [39]:
n_inputs = 28*28  # MNIST
n_hidden1 = 300
n_hidden2 = 100
n_outputs = 10

In [40]:
reset_graph()

X = tf.placeholder(tf.float32, shape=(None, n_inputs), name="X")
y = tf.placeholder(tf.int32, shape=(None), name="y")

In [41]:
with tf.name_scope("dnn"):
    hidden1 = tf.layers.dense(X, n_hidden1, name="hidden1",
                              activation=tf.nn.relu)
    hidden2 = tf.layers.dense(hidden1, n_hidden2, name="hidden2",
                              activation=tf.nn.relu)
    logits = tf.layers.dense(hidden2, n_outputs, name="outputs")

In [42]:
with tf.name_scope("loss"):
    xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)
    loss = tf.reduce_mean(xentropy, name="loss")
    loss_summary = tf.summary.scalar('log_loss', loss)

In [43]:
learning_rate = 0.01

with tf.name_scope("train"):
    optimizer = tf.train.GradientDescentOptimizer(learning_rate)
    training_op = optimizer.minimize(loss)

In [44]:
with tf.name_scope("eval"):
    correct = tf.nn.in_top_k(logits, y, 1)
    accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
    accuracy_summary = tf.summary.scalar('accuracy', accuracy)

In [45]:
init = tf.global_variables_initializer()
saver = tf.train.Saver()

Now we need to define the directory to write the TensorBoard logs to:


In [46]:
from datetime import datetime

def log_dir(prefix=""):
    now = datetime.utcnow().strftime("%Y%m%d%H%M%S")
    root_logdir = "tf_logs"
    if prefix:
        prefix += "-"
    name = prefix + "run-" + now
    return "{}/{}/".format(root_logdir, name)

In [47]:
logdir = log_dir("mnist_dnn")

Now we can create the FileWriter that we will use to write the TensorBoard logs:


In [48]:
file_writer = tf.summary.FileWriter(logdir, tf.get_default_graph())

Hey! Why don't we implement early stopping? For this, we are going to need to use the validation set.


In [49]:
m, n = X_train.shape

In [50]:
n_epochs = 10001
batch_size = 50
n_batches = int(np.ceil(m / batch_size))

checkpoint_path = "/tmp/my_deep_mnist_model.ckpt"
checkpoint_epoch_path = checkpoint_path + ".epoch"
final_model_path = "./my_deep_mnist_model"

best_loss = np.infty
epochs_without_progress = 0
max_epochs_without_progress = 50

with tf.Session() as sess:
    if os.path.isfile(checkpoint_epoch_path):
        # if the checkpoint file exists, restore the model and load the epoch number
        with open(checkpoint_epoch_path, "rb") as f:
            start_epoch = int(f.read())
        print("Training was interrupted. Continuing at epoch", start_epoch)
        saver.restore(sess, checkpoint_path)
    else:
        start_epoch = 0
        sess.run(init)

    for epoch in range(start_epoch, n_epochs):
        for X_batch, y_batch in shuffle_batch(X_train, y_train, batch_size):
            sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
        accuracy_val, loss_val, accuracy_summary_str, loss_summary_str = sess.run([accuracy, loss, accuracy_summary, loss_summary], feed_dict={X: X_valid, y: y_valid})
        file_writer.add_summary(accuracy_summary_str, epoch)
        file_writer.add_summary(loss_summary_str, epoch)
        if epoch % 5 == 0:
            print("Epoch:", epoch,
                  "\tValidation accuracy: {:.3f}%".format(accuracy_val * 100),
                  "\tLoss: {:.5f}".format(loss_val))
            saver.save(sess, checkpoint_path)
            with open(checkpoint_epoch_path, "wb") as f:
                f.write(b"%d" % (epoch + 1))
            if loss_val < best_loss:
                saver.save(sess, final_model_path)
                best_loss = loss_val
            else:
                epochs_without_progress += 5
                if epochs_without_progress > max_epochs_without_progress:
                    print("Early stopping")
                    break


Epoch: 0 	Validation accuracy: 92.180% 	Loss: 0.30208
Epoch: 5 	Validation accuracy: 95.980% 	Loss: 0.15037
Epoch: 10 	Validation accuracy: 97.100% 	Loss: 0.11160
Epoch: 15 	Validation accuracy: 97.700% 	Loss: 0.09562
Epoch: 20 	Validation accuracy: 97.840% 	Loss: 0.08309
Epoch: 25 	Validation accuracy: 98.040% 	Loss: 0.07706
Epoch: 30 	Validation accuracy: 98.140% 	Loss: 0.07287
Epoch: 35 	Validation accuracy: 98.280% 	Loss: 0.07133
Epoch: 40 	Validation accuracy: 98.220% 	Loss: 0.06968
Epoch: 45 	Validation accuracy: 98.220% 	Loss: 0.06993
Epoch: 50 	Validation accuracy: 98.160% 	Loss: 0.07093
Epoch: 55 	Validation accuracy: 98.280% 	Loss: 0.06994
Epoch: 60 	Validation accuracy: 98.200% 	Loss: 0.06894
Epoch: 65 	Validation accuracy: 98.260% 	Loss: 0.06906
Epoch: 70 	Validation accuracy: 98.220% 	Loss: 0.07057
Epoch: 75 	Validation accuracy: 98.280% 	Loss: 0.06963
Epoch: 80 	Validation accuracy: 98.320% 	Loss: 0.07264
Epoch: 85 	Validation accuracy: 98.200% 	Loss: 0.07403
Epoch: 90 	Validation accuracy: 98.300% 	Loss: 0.07332
Epoch: 95 	Validation accuracy: 98.180% 	Loss: 0.07535
Epoch: 100 	Validation accuracy: 98.260% 	Loss: 0.07542
Early stopping

In [51]:
os.remove(checkpoint_epoch_path)

In [52]:
with tf.Session() as sess:
    saver.restore(sess, final_model_path)
    accuracy_val = accuracy.eval(feed_dict={X: X_test, y: y_test})


INFO:tensorflow:Restoring parameters from ./my_deep_mnist_model

In [53]:
accuracy_val


Out[53]:
0.9796

In [ ]: