In [1]:
%pylab inline
import pandas as pd
from sklearn.decomposition import PCA
from sklearn import preprocessing
from sklearn import linear_model
In [2]:
train = pd.read_csv('train.csv')
new_labels = train.columns.values
new_labels[-1] = 'total_rentals'
train.columns = new_labels
train[:5]
Out[2]:
In [3]:
plt.plot(train.casual)
plt.show()
plt.plot(train.registered)
plt.show()
plt.plot(train.total_rentals)
plt.show()
In [21]:
X = train.ix[:,1:9]
dts = [datetime.datetime.strptime(d,'%Y-%m-%d %H:%M:%S') for d in train.datetime]
months = [d.month for d in dts]
hours = [d.hour for d in dts]
X.insert(0,'hour',hours)
X.insert(0,'month',months)
X[:5]
Out[21]:
In [22]:
y = train.ix[:,-1:-4:-1]
y[:5]
Out[22]:
In [23]:
test_set = pd.read_csv('test.csv')
dts = [datetime.datetime.strptime(d,'%Y-%m-%d %H:%M:%S') for d in test_set.datetime]
months = [d.month for d in dts]
hours = [d.hour for d in dts]
print len(months), len(hours)
test_set.insert(1,'hour',hours)
test_set.insert(1,'month',months)
print test_set.shape
test_set[:5]
Out[23]:
In [30]:
print X[X.month == 1].shape, y[X.month == 1].shape
In [36]:
lm = linear_model.BayesianRidge(compute_score=True)
y_tot = y_reg = y_cas = np.asarray([])
mean_score = 0
print X.shape, y.shape
for m in range(1,13):
lm.fit(X[X.month == m],y.ix[X.month == m,0])
mean_score += lm.score(X[X.month == m],y.ix[X.month == m,0])/12
pred = lm.predict(test_set.ix[test_set.month == m,1:])
y_tot = np.append(y_tot, pred)
lm.fit(X[X.month == m],y.ix[X.month == m,1])
# mean_score += lm.score(X[X.month == m],y.ix[X.month == m,0])/12
pred = lm.predict(test_set.ix[test_set.month == m,1:])
y_reg = np.append(y_reg, pred)
lm.fit(X[X.month == m],y.ix[X.month == m,2])
# mean_score += lm.score(X[X.month == m],y.ix[X.month == m,0])/12
pred = lm.predict(test_set.ix[test_set.month == m,1:])
y_cas = np.append(y_cas, pred)
print mean_score
y_cas[y_cas < 0] = 0
y_reg[y_reg < 0] = 0
plt.plot(y_cas)
plt.plot(y_reg)
plt.plot(y_cas+y_reg)
plt.plot(y_tot)
plt.show()
In [37]:
sample_submission = pd.read_csv('sampleSubmission.csv')
new_labels = sample_submission.columns.values
new_labels[-1] = 'total_rentals'
sample_submission.columns = new_labels
print sample_submission.shape
my_submission = sample_submission.copy()
new_labels = my_submission.columns.values
new_labels[-1] = 'total_rentals'
my_submission.columns = new_labels
my_submission.total_rentals = np.round(y_cas+y_reg)
plt.plot(my_submission.total_rentals)
print my_submission.shape
my_submission[:5]
Out[37]:
In [39]:
new_labels = my_submission.columns.values
new_labels[-1] = 'count'
my_submission.columns = new_labels
my_submission.to_csv('m2m-bayesianridge.csv',index=False)
In [ ]: