In [2]:
%matplotlib inline
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from astropy.table import Table
In [2]:
plt.style.use("fivethirtyeight")
data/star_rv.csv
All RV measurements for all stars are compiled from Simbad using TAP Service using the following query:
SELECT t.name, bibcode, nbmes, obsdate, qual, quality,
velType, velValue, velValue_prec, remark, remarks, ident.oidref
FROM TAP_UPLOAD.mytable as t JOIN ident ON t.name = ident.id
JOIN mesVelocities ON mesVelocities.oidref = ident.oidref
where I upload a table of one column of hipparcos or tycho2 id strings.
data/observed.csv
Extracted header info of all observed stars (see generate_log.ipynb
)
data/star_identifier.csv
contains three columns
In [7]:
dfstar = pd.read_csv("../data/star_identifier.csv")
dfobs = pd.read_csv("../data/observed.csv")
dfrv = pd.read_csv("../data/star_rv.csv")
In [10]:
objs = dfobs.groupby("objtype").get_group("obj")
print(len(objs))
In [14]:
dfobs.loc[dfobs.objtype=='obj', 'row_id'] = \
[int(s.split("-")[1]) for s in objs.OBJECT.loc[dfobs.objtype=='obj']]
In [20]:
obsrv = pd.merge(
dfobs,
pd.merge(dfrv, dfstar, left_on='name', right_on='name', how='left'),
how='left')
In [26]:
# quality counts for obeserved ta
obsrv.quality.value_counts()
Out[26]: