Language Translation

In this project, you’re going to take a peek into the realm of neural network machine translation. You’ll be training a sequence to sequence model on a dataset of English and French sentences that can translate new sentences from English to French.

Get the Data

Since translating the whole language of English to French will take lots of time to train, we have provided you with a small portion of the English corpus.


In [1]:
import helper
import problem_unittests as tests

source_path = 'data/small_vocab_en'
target_path = 'data/small_vocab_fr'
source_text = helper.load_data(source_path)
target_text = helper.load_data(target_path)

Explore the Data

Play around with view_sentence_range to view different parts of the data.


In [2]:
view_sentence_range = (0, 10)

import numpy as np

print('Dataset Stats')
print('Roughly the number of unique words: {}'.format(len({word: None for word in source_text.split()})))

sentences = source_text.split('\n')
word_counts = [len(sentence.split()) for sentence in sentences]
print('Number of sentences: {}'.format(len(sentences)))
print('Average number of words in a sentence: {}'.format(np.average(word_counts)))

print()
print('English sentences {} to {}:'.format(*view_sentence_range))
print('\n'.join(source_text.split('\n')[view_sentence_range[0]:view_sentence_range[1]]))
print()
print('French sentences {} to {}:'.format(*view_sentence_range))
print('\n'.join(target_text.split('\n')[view_sentence_range[0]:view_sentence_range[1]]))


Dataset Stats
Roughly the number of unique words: 227
Number of sentences: 137861
Average number of words in a sentence: 13.225277634719028

English sentences 0 to 10:
new jersey is sometimes quiet during autumn , and it is snowy in april .
the united states is usually chilly during july , and it is usually freezing in november .
california is usually quiet during march , and it is usually hot in june .
the united states is sometimes mild during june , and it is cold in september .
your least liked fruit is the grape , but my least liked is the apple .
his favorite fruit is the orange , but my favorite is the grape .
paris is relaxing during december , but it is usually chilly in july .
new jersey is busy during spring , and it is never hot in march .
our least liked fruit is the lemon , but my least liked is the grape .
the united states is sometimes busy during january , and it is sometimes warm in november .

French sentences 0 to 10:
new jersey est parfois calme pendant l' automne , et il est neigeux en avril .
les états-unis est généralement froid en juillet , et il gèle habituellement en novembre .
california est généralement calme en mars , et il est généralement chaud en juin .
les états-unis est parfois légère en juin , et il fait froid en septembre .
votre moins aimé fruit est le raisin , mais mon moins aimé est la pomme .
son fruit préféré est l'orange , mais mon préféré est le raisin .
paris est relaxant en décembre , mais il est généralement froid en juillet .
new jersey est occupé au printemps , et il est jamais chaude en mars .
notre fruit est moins aimé le citron , mais mon moins aimé est le raisin .
les états-unis est parfois occupé en janvier , et il est parfois chaud en novembre .

Implement Preprocessing Function

Text to Word Ids

As you did with other RNNs, you must turn the text into a number so the computer can understand it. In the function text_to_ids(), you'll turn source_text and target_text from words to ids. However, you need to add the <EOS> word id at the end of target_text. This will help the neural network predict when the sentence should end.

You can get the <EOS> word id by doing:

target_vocab_to_int['<EOS>']

You can get other word ids using source_vocab_to_int and target_vocab_to_int.


In [3]:
def text_to_ids(source_text, target_text, source_vocab_to_int,
                target_vocab_to_int):
    """
    Convert source and target text to proper vectors of word ids
    :param source_text: String that contains all the source text.
    :param target_text: String that contains all the target text.
    :param source_vocab_to_int: Dictionary to go from the source words to an id
    :param target_vocab_to_int: Dictionary to go from the target words to an id
    :return: A tuple of lists of lists (source_id_text, target_id_text)
    """
    sentences = source_text.split('\n')
    source_vectors = []
    for sent in sentences:
        source_vectors.append([
            source_vocab_to_int[word] for word in sent.split(' ') if word != ''
        ])

    sentences = target_text.split('\n')
    target_vectors = []
    for sent in sentences:
        target_vectors.append([
            target_vocab_to_int[word] for word in sent.split(' ') if word != ''
        ] + [target_vocab_to_int['<EOS>']])

    return source_vectors, target_vectors


tests.test_text_to_ids(text_to_ids)


Tests Passed

Preprocess all the data and save it

Running the code cell below will preprocess all the data and save it to file.


In [4]:
helper.preprocess_and_save_data(source_path, target_path, text_to_ids)

Check Point

This is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk.


In [5]:
import numpy as np
import helper
import problem_unittests as tests

(source_int_text, target_int_text), (source_vocab_to_int, target_vocab_to_int), _ = helper.load_preprocess()

Check the Version of TensorFlow and Access to GPU

This will check to make sure you have the correct version of TensorFlow and access to a GPU


In [6]:
from distutils.version import LooseVersion
import warnings
import tensorflow as tf
from tensorflow.python.layers.core import Dense

# Check TensorFlow Version
assert LooseVersion(tf.__version__) == LooseVersion('1.1.0'), 'Please use TensorFlow version 1.1'
print('TensorFlow Version: {}'.format(tf.__version__))

# Check for a GPU
if not tf.test.gpu_device_name():
    warnings.warn('No GPU found. Please use a GPU to train your neural network.')
else:
    print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))


TensorFlow Version: 1.1.0
Default GPU Device: /gpu:0

Build the Neural Network

You'll build the components necessary to build a Sequence-to-Sequence model by implementing the following functions below:

  • model_inputs
  • process_decoder_input
  • encoding_layer
  • decoding_layer_train
  • decoding_layer_infer
  • decoding_layer
  • seq2seq_model

Input

Implement the model_inputs() function to create TF Placeholders for the Neural Network. It should create the following placeholders:

  • Input text placeholder named "input" using the TF Placeholder name parameter with rank 2.
  • Targets placeholder with rank 2.
  • Learning rate placeholder with rank 0.
  • Keep probability placeholder named "keep_prob" using the TF Placeholder name parameter with rank 0.
  • Target sequence length placeholder named "target_sequence_length" with rank 1
  • Max target sequence length tensor named "max_target_len" getting its value from applying tf.reduce_max on the target_sequence_length placeholder. Rank 0.
  • Source sequence length placeholder named "source_sequence_length" with rank 1

In [7]:
def model_inputs():
    """
    Create TF Placeholders for input, targets, learning rate, and lengths of source and target sequences.
    :return: Tuple (input, targets, learning rate, keep probability, target sequence length,
    max target sequence length, source sequence length)
    """
    inputs = tf.placeholder(tf.int32, [None, None], 'input')
    targets = tf.placeholder(tf.int32, [None, None], 'target')
    lr = tf.placeholder(tf.float32, name='lr')
    kp = tf.placeholder(tf.float32, name='keep_prob')
    target_seq_len = tf.placeholder(tf.int32, [None], name='target_sequence_length')
    max_target_seq_len = tf.reduce_max(target_seq_len, name='max_target_len')
    source_seq_len = tf.placeholder(tf.int32, [None], name='source_sequence_length')
    return inputs, targets, lr, kp, target_seq_len, max_target_seq_len, source_seq_len

tests.test_model_inputs(model_inputs)


Tests Passed

Process Decoder Input

Implement process_decoder_input by removing the last word id from each batch in target_data and concat the GO ID to the begining of each batch.


In [8]:
def process_decoder_input(target_data, target_vocab_to_int, batch_size):
    """
    Preprocess target data for encoding
    :param target_data: Target Placehoder
    :param target_vocab_to_int: Dictionary to go from the target words to an id
    :param batch_size: Batch Size
    :return: Preprocessed target data
    """
    # difficult way
    # ending = tf.strided_slice(target_data, [0, 0], [batch_size, -1], [1, 1])

    # easy way
    ending = target_data[:, :-1]

    dec_input = tf.concat(
        values=[tf.fill(dims=[batch_size, 1], value=target_vocab_to_int['<GO>']),
                ending],
        axis=1)
    return dec_input


tests.test_process_encoding_input(process_decoder_input)


Tests Passed

Encoding

Implement encoding_layer() to create a Encoder RNN layer:


In [9]:
from imp import reload
reload(tests)


def encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob,
                   source_sequence_length, source_vocab_size,
                   encoding_embedding_size):
    """
    Create encoding layer
    :param rnn_inputs: Inputs for the RNN
    :param rnn_size: RNN Size
    :param num_layers: Number of layers
    :param keep_prob: Dropout keep probability
    :param source_sequence_length: a list of the lengths of each sequence in the batch
    :param source_vocab_size: vocabulary size of source data
    :param encoding_embedding_size: embedding size of source data
    :return: tuple (RNN output, RNN state)
    """
    emb = tf.contrib.layers.embed_sequence(
        ids=rnn_inputs,
        vocab_size=source_vocab_size,
        embed_dim=encoding_embedding_size)

    def wrapped_cell(rnn_size, keep_prob):
        initer = tf.random_uniform_initializer(-0.1, 0.1, seed=2)
        cell = tf.contrib.rnn.LSTMCell(num_units=rnn_size, initializer=initer)
        return tf.contrib.rnn.DropoutWrapper(
            cell=cell, input_keep_prob=keep_prob)

    stacked = tf.contrib.rnn.MultiRNNCell(
        [wrapped_cell(rnn_size, keep_prob) for _ in range(num_layers)])

    rnn_output, rnn_state = tf.nn.dynamic_rnn(
        cell=stacked,
        inputs=emb,
        sequence_length=source_sequence_length,
        dtype=tf.float32)

    return rnn_output, rnn_state


tests.test_encoding_layer(encoding_layer)


Tests Passed

Decoding - Training

Create a training decoding layer:


In [10]:
def decoding_layer_train(encoder_state, dec_cell, dec_embed_input, 
                         target_sequence_length, max_target_sequence_length, 
                         output_layer, keep_prob):
    """
    Create a decoding layer for training
    :param encoder_state: Encoder State
    :param dec_cell: Decoder RNN Cell
    :param dec_embed_input: Decoder embedded input
    :param target_sequence_length: The lengths of each sequence in the target batch
    :param max_summary_length: The length of the longest sequence in the batch
    :param output_layer: Function to apply the output layer
    :param keep_prob: Dropout keep probability
    :return: BasicDecoder output containing training logits and sample_id
    """
    train_help = tf.contrib.seq2seq.TrainingHelper(inputs=dec_embed_input, 
                                                   sequence_length=target_sequence_length)
    
    train_decoder = tf.contrib.seq2seq.BasicDecoder(cell=dec_cell, 
                                                    helper=train_help,
                                                    initial_state=encoder_state,
                                                    output_layer=output_layer)
    
    f_outputs, f_state = tf.contrib.seq2seq.dynamic_decode(decoder=train_decoder,
                                                           impute_finished=True, 
                                                           maximum_iterations=max_target_sequence_length)
    
    # TODO: keep_prob - unused argument?
    return f_outputs

tests.test_decoding_layer_train(decoding_layer_train)


Tests Passed

Decoding - Inference

Create inference decoder:


In [11]:
def decoding_layer_infer(encoder_state, dec_cell, dec_embeddings, start_of_sequence_id,
                         end_of_sequence_id, max_target_sequence_length,
                         vocab_size, output_layer, batch_size, keep_prob):
    """
    Create a decoding layer for inference
    :param encoder_state: Encoder state
    :param dec_cell: Decoder RNN Cell
    :param dec_embeddings: Decoder embeddings
    :param start_of_sequence_id: GO ID
    :param end_of_sequence_id: EOS Id
    :param max_target_sequence_length: Maximum length of target sequences
    :param vocab_size: Size of decoder/target vocabulary
    :param output_layer: Function to apply the output layer
    :param batch_size: Batch size
    :param keep_prob: Dropout keep probability
    :return: BasicDecoder output containing inference logits and sample_id
    """
    start_tokens = tf.tile(input=tf.constant([start_of_sequence_id], dtype=tf.int32),
                           multiples=[batch_size],
                           name='start_tokens')

    infer_help = tf.contrib.seq2seq.GreedyEmbeddingHelper(embedding=dec_embeddings, 
                                                          start_tokens=start_tokens, 
                                                          end_token=end_of_sequence_id)

    infer_decoder = tf.contrib.seq2seq.BasicDecoder(cell=dec_cell, 
                                                    helper=infer_help,
                                                    initial_state=encoder_state,
                                                    output_layer=output_layer)

    f_outputs, f_state = tf.contrib.seq2seq.dynamic_decode(decoder=infer_decoder,
                                                           impute_finished=True, 
                                                           maximum_iterations=max_target_sequence_length)
    
    # TODO: keep_prob - unused argument
    return f_outputs


tests.test_decoding_layer_infer(decoding_layer_infer)


Tests Passed

Build the Decoding Layer

Implement decoding_layer() to create a Decoder RNN layer.

  • Embed the target sequences
  • Construct the decoder LSTM cell (just like you constructed the encoder cell above)
  • Create an output layer to map the outputs of the decoder to the elements of our vocabulary
  • Use the your decoding_layer_train(encoder_state, dec_cell, dec_embed_input, target_sequence_length, max_target_sequence_length, output_layer, keep_prob) function to get the training logits.
  • Use your decoding_layer_infer(encoder_state, dec_cell, dec_embeddings, start_of_sequence_id, end_of_sequence_id, max_target_sequence_length, vocab_size, output_layer, batch_size, keep_prob) function to get the inference logits.

Note: You'll need to use tf.variable_scope to share variables between training and inference.


In [12]:
def decoding_layer(dec_input, encoder_state, target_sequence_length,
                   max_target_sequence_length, rnn_size, num_layers,
                   target_vocab_to_int, target_vocab_size, batch_size,
                   keep_prob, decoding_embedding_size):
    """
    Create decoding layer
    :param dec_input: Decoder input
    :param encoder_state: Encoder state
    :param target_sequence_length: The lengths of each sequence in the target batch
    :param max_target_sequence_length: Maximum length of target sequences
    :param rnn_size: RNN Size
    :param num_layers: Number of layers
    :param target_vocab_to_int: Dictionary to go from the target words to an id
    :param target_vocab_size: Size of target vocabulary
    :param batch_size: The size of the batch
    :param keep_prob: Dropout keep probability
    :param decoding_embedding_size: Decoding embedding size
    :return: Tuple of (Training BasicDecoderOutput, Inference BasicDecoderOutput)
    """

    # Embed the target sequences
    dec_embeddings = tf.Variable(
        tf.random_uniform([target_vocab_size, decoding_embedding_size]))
    emb = tf.nn.embedding_lookup(dec_embeddings, dec_input)

    # Construct the decoder LSTM cell 
    #(just like you constructed the encoder cell above)
    def make_cell(rnn_size):
        dec_cell = tf.contrib.rnn.LSTMCell(
            rnn_size,
            initializer=tf.random_uniform_initializer(-0.1, 0.1, seed=2))
        return dec_cell

    dec_cell = tf.contrib.rnn.MultiRNNCell(
        [make_cell(rnn_size) for _ in range(num_layers)])

    # Create an output layer to map the outputs of the decoder 
    # to the elements of our vocabulary
    output_layer = Dense(
        target_vocab_size,
        kernel_initializer=tf.truncated_normal_initializer(
            mean=0.0, stddev=0.1))

    with tf.variable_scope("decode"):
        train_logits = decoding_layer_train(
            encoder_state, dec_cell, emb, target_sequence_length,
            max_target_sequence_length, output_layer, keep_prob)

    with tf.variable_scope("decode", reuse=True):
        infer_logits = decoding_layer_infer(
            encoder_state, dec_cell, dec_embeddings,
            target_vocab_to_int['<GO>'], target_vocab_to_int['<EOS>'],
            max_target_sequence_length, target_vocab_size, output_layer,
            batch_size, keep_prob)

    return train_logits, infer_logits


tests.test_decoding_layer(decoding_layer)


Tests Passed

Build the Neural Network

Apply the functions you implemented above to:

  • Encode the input using your encoding_layer(rnn_inputs, rnn_size, num_layers, keep_prob, source_sequence_length, source_vocab_size, encoding_embedding_size).
  • Process target data using your process_decoder_input(target_data, target_vocab_to_int, batch_size) function.
  • Decode the encoded input using your decoding_layer(dec_input, enc_state, target_sequence_length, max_target_sentence_length, rnn_size, num_layers, target_vocab_to_int, target_vocab_size, batch_size, keep_prob, dec_embedding_size) function.

In [13]:
def seq2seq_model(input_data, target_data, keep_prob, batch_size,
                  source_sequence_length, target_sequence_length,
                  max_target_sentence_length, source_vocab_size,
                  target_vocab_size, enc_embedding_size, dec_embedding_size,
                  rnn_size, num_layers, target_vocab_to_int):
    """
    Build the Sequence-to-Sequence part of the neural network
    :param input_data: Input placeholder
    :param target_data: Target placeholder
    :param keep_prob: Dropout keep probability placeholder
    :param batch_size: Batch Size
    :param source_sequence_length: Sequence Lengths of source sequences in the batch
    :param target_sequence_length: Sequence Lengths of target sequences in the batch
    :param source_vocab_size: Source vocabulary size
    :param target_vocab_size: Target vocabulary size
    :param enc_embedding_size: Decoder embedding size
    :param dec_embedding_size: Encoder embedding size
    :param rnn_size: RNN Size
    :param num_layers: Number of layers
    :param target_vocab_to_int: Dictionary to go from the target words to an id
    :return: Tuple of (Training BasicDecoderOutput, Inference BasicDecoderOutput)
    """

    _, enc_state = encoding_layer(
        input_data, rnn_size, num_layers, keep_prob, source_sequence_length,
        source_vocab_size, enc_embedding_size)

    dec_input = process_decoder_input(target_data, target_vocab_to_int, batch_size)

    train_dec_out, infer_dec_out = decoding_layer(
        dec_input, enc_state, target_sequence_length,
        max_target_sentence_length, rnn_size, num_layers, target_vocab_to_int,
        target_vocab_size, batch_size, keep_prob, dec_embedding_size)

    return train_dec_out, infer_dec_out


tests.test_seq2seq_model(seq2seq_model)


Tests Passed

Neural Network Training

Hyperparameters

Tune the following parameters:

  • Set epochs to the number of epochs.
  • Set batch_size to the batch size.
  • Set rnn_size to the size of the RNNs.
  • Set num_layers to the number of layers.
  • Set encoding_embedding_size to the size of the embedding for the encoder.
  • Set decoding_embedding_size to the size of the embedding for the decoder.
  • Set learning_rate to the learning rate.
  • Set keep_probability to the Dropout keep probability
  • Set display_step to state how many steps between each debug output statement

In [23]:
# Number of Epochs
epochs = 20
# Batch Size
batch_size = 512
# RNN Size
rnn_size = 512
# Number of Layers
num_layers = 2
# Embedding Size
encoding_embedding_size = 64
decoding_embedding_size = 64
# Learning Rate
learning_rate = 0.001
# Dropout Keep Probability
keep_probability = 0.5
display_step = 50

Build the Graph

Build the graph using the neural network you implemented.


In [24]:
save_path = 'checkpoints/dev'
((source_int_text, target_int_text),
 (source_vocab_to_int, target_vocab_to_int), _) = helper.load_preprocess()
max_target_sentence_length = max([len(sentence) for sentence in source_int_text])

train_graph = tf.Graph()
with train_graph.as_default():
    (input_data, targets, lr, keep_prob, target_sequence_length,
     max_target_sequence_length, source_sequence_length) = model_inputs()

    #sequence_length = tf.placeholder_with_default(max_target_sentence_length, None, name='sequence_length')
    input_shape = tf.shape(input_data)

    train_logits, inference_logits = seq2seq_model(tf.reverse(input_data, [-1]),
                                                   targets,
                                                   keep_prob,
                                                   batch_size,
                                                   source_sequence_length,
                                                   target_sequence_length,
                                                   max_target_sequence_length,
                                                   len(source_vocab_to_int),
                                                   len(target_vocab_to_int),
                                                   encoding_embedding_size,
                                                   decoding_embedding_size,
                                                   rnn_size,
                                                   num_layers,
                                                   target_vocab_to_int)


    training_logits = tf.identity(train_logits.rnn_output, name='logits')
    inference_logits = tf.identity(inference_logits.sample_id, name='predictions')

    masks = tf.sequence_mask(target_sequence_length, max_target_sequence_length, dtype=tf.float32, name='masks')

    with tf.name_scope("optimization"):
        # Loss function
        cost = tf.contrib.seq2seq.sequence_loss(
            training_logits,
            targets,
            masks)

        # Optimizer
        optimizer = tf.train.AdamOptimizer(lr)

        # Gradient Clipping
        gradients = optimizer.compute_gradients(cost)
        capped_gradients = [(tf.clip_by_value(grad, -1., 1.), var) for grad, var in gradients if grad is not None]
        train_op = optimizer.apply_gradients(capped_gradients)

Batch and pad the source and target sequences


In [25]:
def pad_sentence_batch(sentence_batch, pad_int):
    """Pad sentences with <PAD> so that each sentence of a batch has the same length"""
    max_sentence = max([len(sentence) for sentence in sentence_batch])
    return [sentence + [pad_int] * (max_sentence - len(sentence)) for sentence in sentence_batch]


def get_batches(sources, targets, batch_size, source_pad_int, target_pad_int):
    """Batch targets, sources, and the lengths of their sentences together"""
    for batch_i in range(0, len(sources)//batch_size):
        start_i = batch_i * batch_size

        # Slice the right amount for the batch
        sources_batch = sources[start_i:start_i + batch_size]
        targets_batch = targets[start_i:start_i + batch_size]

        # Pad
        pad_sources_batch = np.array(pad_sentence_batch(sources_batch, source_pad_int))
        pad_targets_batch = np.array(pad_sentence_batch(targets_batch, target_pad_int))

        # Need the lengths for the _lengths parameters
        pad_targets_lengths = []
        for target in pad_targets_batch:
            pad_targets_lengths.append(len(target))

        pad_source_lengths = []
        for source in pad_sources_batch:
            pad_source_lengths.append(len(source))

        yield pad_sources_batch, pad_targets_batch, pad_source_lengths, pad_targets_lengths

Train

Train the neural network on the preprocessed data. If you have a hard time getting a good loss, check the forms to see if anyone is having the same problem.


In [26]:
def get_accuracy(target, logits):
    """
    Calculate accuracy
    """
    max_seq = max(target.shape[1], logits.shape[1])
    if max_seq - target.shape[1]:
        target = np.pad(target, [(0, 0), (0, max_seq - target.shape[1])],
                        'constant')
    if max_seq - logits.shape[1]:
        logits = np.pad(logits, [(0, 0), (0, max_seq - logits.shape[1])],
                        'constant')

    return np.mean(np.equal(target, logits))


# Split data to training and validation sets
train_source = source_int_text[batch_size:]
train_target = target_int_text[batch_size:]
valid_source = source_int_text[:batch_size]
valid_target = target_int_text[:batch_size]
(valid_sources_batch, valid_targets_batch, valid_sources_lengths,
 valid_targets_lengths) = next(
     get_batches(valid_source, valid_target, batch_size, source_vocab_to_int[
         '<PAD>'], target_vocab_to_int['<PAD>']))
with tf.Session(graph=train_graph) as sess:
    sess.run(tf.global_variables_initializer())

    for epoch_i in range(epochs):
        for batch_i, (source_batch, target_batch, sources_lengths,
                      targets_lengths) in enumerate(
                          get_batches(train_source, train_target, batch_size,
                                      source_vocab_to_int['<PAD>'],
                                      target_vocab_to_int['<PAD>'])):

            _, loss = sess.run([train_op, cost], {
                input_data: source_batch,
                targets: target_batch,
                lr: learning_rate,
                target_sequence_length: targets_lengths,
                source_sequence_length: sources_lengths,
                keep_prob: keep_probability
            })

            if batch_i % display_step == 0 and batch_i > 0:

                batch_train_logits = sess.run(inference_logits, {
                    input_data:
                    source_batch,
                    source_sequence_length:
                    sources_lengths,
                    target_sequence_length:
                    targets_lengths,
                    keep_prob:
                    1.0
                })

                batch_valid_logits = sess.run(inference_logits, {
                    input_data:
                    valid_sources_batch,
                    source_sequence_length:
                    valid_sources_lengths,
                    target_sequence_length:
                    valid_targets_lengths,
                    keep_prob:
                    1.0
                })

                train_acc = get_accuracy(target_batch, batch_train_logits)

                valid_acc = get_accuracy(valid_targets_batch,
                                         batch_valid_logits)

                print(
                    'Epoch {:>3} Batch {:>4}/{} - Train Accuracy: {:>6.4f}, Validation Accuracy: {:>6.4f}, Loss: {:>6.4f}'
                    .format(epoch_i, batch_i,
                            len(source_int_text) // batch_size, train_acc,
                            valid_acc, loss))

    # Save Model
    saver = tf.train.Saver()
    saver.save(sess, save_path)
    print('Model Trained and Saved')
    print('# Number of Epochs         ', epochs)
    print('# Batch Size               ', batch_size)
    print('# RNN Size                 ', rnn_size)
    print('# Number of Layers         ', num_layers)
    print('# Embedding Size           ', encoding_embedding_size)
    print('# Learning Rate            ', learning_rate)
    print('# Dropout Keep Probability ', keep_probability)


Epoch   0 Batch   50/269 - Train Accuracy: 0.4626, Validation Accuracy: 0.5002, Loss: 1.9877
Epoch   0 Batch  100/269 - Train Accuracy: 0.5273, Validation Accuracy: 0.5273, Loss: 1.3133
Epoch   0 Batch  150/269 - Train Accuracy: 0.5458, Validation Accuracy: 0.5644, Loss: 1.0073
Epoch   0 Batch  200/269 - Train Accuracy: 0.5831, Validation Accuracy: 0.5972, Loss: 0.8039
Epoch   0 Batch  250/269 - Train Accuracy: 0.6310, Validation Accuracy: 0.6409, Loss: 0.6532
Epoch   1 Batch   50/269 - Train Accuracy: 0.6803, Validation Accuracy: 0.6922, Loss: 0.5350
Epoch   1 Batch  100/269 - Train Accuracy: 0.7511, Validation Accuracy: 0.7223, Loss: 0.4311
Epoch   1 Batch  150/269 - Train Accuracy: 0.7815, Validation Accuracy: 0.7473, Loss: 0.3607
Epoch   1 Batch  200/269 - Train Accuracy: 0.7937, Validation Accuracy: 0.7909, Loss: 0.3082
Epoch   1 Batch  250/269 - Train Accuracy: 0.8330, Validation Accuracy: 0.8365, Loss: 0.2546
Epoch   2 Batch   50/269 - Train Accuracy: 0.8407, Validation Accuracy: 0.8627, Loss: 0.2130
Epoch   2 Batch  100/269 - Train Accuracy: 0.8875, Validation Accuracy: 0.8786, Loss: 0.1567
Epoch   2 Batch  150/269 - Train Accuracy: 0.8979, Validation Accuracy: 0.8968, Loss: 0.1294
Epoch   2 Batch  200/269 - Train Accuracy: 0.8895, Validation Accuracy: 0.9007, Loss: 0.1172
Epoch   2 Batch  250/269 - Train Accuracy: 0.9106, Validation Accuracy: 0.9201, Loss: 0.1018
Epoch   3 Batch   50/269 - Train Accuracy: 0.8986, Validation Accuracy: 0.9142, Loss: 0.0992
Epoch   3 Batch  100/269 - Train Accuracy: 0.9218, Validation Accuracy: 0.9264, Loss: 0.0782
Epoch   3 Batch  150/269 - Train Accuracy: 0.9354, Validation Accuracy: 0.9361, Loss: 0.0736
Epoch   3 Batch  200/269 - Train Accuracy: 0.9362, Validation Accuracy: 0.9336, Loss: 0.0632
Epoch   3 Batch  250/269 - Train Accuracy: 0.9388, Validation Accuracy: 0.9374, Loss: 0.0626
Epoch   4 Batch   50/269 - Train Accuracy: 0.9230, Validation Accuracy: 0.9462, Loss: 0.0639
Epoch   4 Batch  100/269 - Train Accuracy: 0.9450, Validation Accuracy: 0.9473, Loss: 0.0535
Epoch   4 Batch  150/269 - Train Accuracy: 0.9478, Validation Accuracy: 0.9466, Loss: 0.0537
Epoch   4 Batch  200/269 - Train Accuracy: 0.9479, Validation Accuracy: 0.9468, Loss: 0.0460
Epoch   4 Batch  250/269 - Train Accuracy: 0.9509, Validation Accuracy: 0.9416, Loss: 0.0431
Epoch   5 Batch   50/269 - Train Accuracy: 0.9390, Validation Accuracy: 0.9539, Loss: 0.0487
Epoch   5 Batch  100/269 - Train Accuracy: 0.9504, Validation Accuracy: 0.9491, Loss: 0.0400
Epoch   5 Batch  150/269 - Train Accuracy: 0.9592, Validation Accuracy: 0.9562, Loss: 0.0396
Epoch   5 Batch  200/269 - Train Accuracy: 0.9533, Validation Accuracy: 0.9593, Loss: 0.0341
Epoch   5 Batch  250/269 - Train Accuracy: 0.9605, Validation Accuracy: 0.9608, Loss: 0.0343
Epoch   6 Batch   50/269 - Train Accuracy: 0.9507, Validation Accuracy: 0.9606, Loss: 0.0385
Epoch   6 Batch  100/269 - Train Accuracy: 0.9608, Validation Accuracy: 0.9587, Loss: 0.0340
Epoch   6 Batch  150/269 - Train Accuracy: 0.9678, Validation Accuracy: 0.9600, Loss: 0.0284
Epoch   6 Batch  200/269 - Train Accuracy: 0.9595, Validation Accuracy: 0.9575, Loss: 0.0265
Epoch   6 Batch  250/269 - Train Accuracy: 0.9615, Validation Accuracy: 0.9648, Loss: 0.0281
Epoch   7 Batch   50/269 - Train Accuracy: 0.9556, Validation Accuracy: 0.9698, Loss: 0.0312
Epoch   7 Batch  100/269 - Train Accuracy: 0.9676, Validation Accuracy: 0.9688, Loss: 0.0267
Epoch   7 Batch  150/269 - Train Accuracy: 0.9665, Validation Accuracy: 0.9654, Loss: 0.0237
Epoch   7 Batch  200/269 - Train Accuracy: 0.9722, Validation Accuracy: 0.9653, Loss: 0.0227
Epoch   7 Batch  250/269 - Train Accuracy: 0.9677, Validation Accuracy: 0.9627, Loss: 0.0234
Epoch   8 Batch   50/269 - Train Accuracy: 0.9642, Validation Accuracy: 0.9705, Loss: 0.0295
Epoch   8 Batch  100/269 - Train Accuracy: 0.9720, Validation Accuracy: 0.9603, Loss: 0.0238
Epoch   8 Batch  150/269 - Train Accuracy: 0.9763, Validation Accuracy: 0.9581, Loss: 0.0217
Epoch   8 Batch  200/269 - Train Accuracy: 0.9754, Validation Accuracy: 0.9648, Loss: 0.0181
Epoch   8 Batch  250/269 - Train Accuracy: 0.9789, Validation Accuracy: 0.9690, Loss: 0.0215
Epoch   9 Batch   50/269 - Train Accuracy: 0.9712, Validation Accuracy: 0.9767, Loss: 0.0249
Epoch   9 Batch  100/269 - Train Accuracy: 0.9796, Validation Accuracy: 0.9725, Loss: 0.0192
Epoch   9 Batch  150/269 - Train Accuracy: 0.9819, Validation Accuracy: 0.9712, Loss: 0.0205
Epoch   9 Batch  200/269 - Train Accuracy: 0.9848, Validation Accuracy: 0.9694, Loss: 0.0166
Epoch   9 Batch  250/269 - Train Accuracy: 0.9764, Validation Accuracy: 0.9685, Loss: 0.0169
Epoch  10 Batch   50/269 - Train Accuracy: 0.9671, Validation Accuracy: 0.9765, Loss: 0.0235
Epoch  10 Batch  100/269 - Train Accuracy: 0.9767, Validation Accuracy: 0.9685, Loss: 0.0193
Epoch  10 Batch  150/269 - Train Accuracy: 0.9884, Validation Accuracy: 0.9640, Loss: 0.0166
Epoch  10 Batch  200/269 - Train Accuracy: 0.9847, Validation Accuracy: 0.9703, Loss: 0.0139
Epoch  10 Batch  250/269 - Train Accuracy: 0.9803, Validation Accuracy: 0.9756, Loss: 0.0159
Epoch  11 Batch   50/269 - Train Accuracy: 0.9740, Validation Accuracy: 0.9766, Loss: 0.0192
Epoch  11 Batch  100/269 - Train Accuracy: 0.9762, Validation Accuracy: 0.9714, Loss: 0.0157
Epoch  11 Batch  150/269 - Train Accuracy: 0.9851, Validation Accuracy: 0.9666, Loss: 0.0158
Epoch  11 Batch  200/269 - Train Accuracy: 0.9887, Validation Accuracy: 0.9668, Loss: 0.0114
Epoch  11 Batch  250/269 - Train Accuracy: 0.9848, Validation Accuracy: 0.9736, Loss: 0.0148
Epoch  12 Batch   50/269 - Train Accuracy: 0.9735, Validation Accuracy: 0.9774, Loss: 0.0147
Epoch  12 Batch  100/269 - Train Accuracy: 0.9873, Validation Accuracy: 0.9656, Loss: 0.0152
Epoch  12 Batch  150/269 - Train Accuracy: 0.9869, Validation Accuracy: 0.9699, Loss: 0.0132
Epoch  12 Batch  200/269 - Train Accuracy: 0.9904, Validation Accuracy: 0.9711, Loss: 0.0108
Epoch  12 Batch  250/269 - Train Accuracy: 0.9854, Validation Accuracy: 0.9703, Loss: 0.0134
Epoch  13 Batch   50/269 - Train Accuracy: 0.9812, Validation Accuracy: 0.9758, Loss: 0.0166
Epoch  13 Batch  100/269 - Train Accuracy: 0.9866, Validation Accuracy: 0.9744, Loss: 0.0131
Epoch  13 Batch  150/269 - Train Accuracy: 0.9894, Validation Accuracy: 0.9775, Loss: 0.0114
Epoch  13 Batch  200/269 - Train Accuracy: 0.9922, Validation Accuracy: 0.9759, Loss: 0.0095
Epoch  13 Batch  250/269 - Train Accuracy: 0.9842, Validation Accuracy: 0.9778, Loss: 0.0117
Epoch  14 Batch   50/269 - Train Accuracy: 0.9820, Validation Accuracy: 0.9778, Loss: 0.0144
Epoch  14 Batch  100/269 - Train Accuracy: 0.9854, Validation Accuracy: 0.9661, Loss: 0.0107
Epoch  14 Batch  150/269 - Train Accuracy: 0.9912, Validation Accuracy: 0.9750, Loss: 0.0125
Epoch  14 Batch  200/269 - Train Accuracy: 0.9920, Validation Accuracy: 0.9719, Loss: 0.0101
Epoch  14 Batch  250/269 - Train Accuracy: 0.9874, Validation Accuracy: 0.9774, Loss: 0.0102
Epoch  15 Batch   50/269 - Train Accuracy: 0.9845, Validation Accuracy: 0.9780, Loss: 0.0154
Epoch  15 Batch  100/269 - Train Accuracy: 0.9900, Validation Accuracy: 0.9748, Loss: 0.0104
Epoch  15 Batch  150/269 - Train Accuracy: 0.9879, Validation Accuracy: 0.9725, Loss: 0.0099
Epoch  15 Batch  200/269 - Train Accuracy: 0.9950, Validation Accuracy: 0.9719, Loss: 0.0083
Epoch  15 Batch  250/269 - Train Accuracy: 0.9896, Validation Accuracy: 0.9711, Loss: 0.0110
Epoch  16 Batch   50/269 - Train Accuracy: 0.9833, Validation Accuracy: 0.9857, Loss: 0.0112
Epoch  16 Batch  100/269 - Train Accuracy: 0.9885, Validation Accuracy: 0.9799, Loss: 0.0098
Epoch  16 Batch  150/269 - Train Accuracy: 0.9924, Validation Accuracy: 0.9761, Loss: 0.0115
Epoch  16 Batch  200/269 - Train Accuracy: 0.9972, Validation Accuracy: 0.9725, Loss: 0.0068
Epoch  16 Batch  250/269 - Train Accuracy: 0.9924, Validation Accuracy: 0.9788, Loss: 0.0095
Epoch  17 Batch   50/269 - Train Accuracy: 0.9908, Validation Accuracy: 0.9850, Loss: 0.0108
Epoch  17 Batch  100/269 - Train Accuracy: 0.9923, Validation Accuracy: 0.9775, Loss: 0.0086
Epoch  17 Batch  150/269 - Train Accuracy: 0.9928, Validation Accuracy: 0.9730, Loss: 0.0092
Epoch  17 Batch  200/269 - Train Accuracy: 0.9947, Validation Accuracy: 0.9689, Loss: 0.0073
Epoch  17 Batch  250/269 - Train Accuracy: 0.9889, Validation Accuracy: 0.9794, Loss: 0.0094
Epoch  18 Batch   50/269 - Train Accuracy: 0.9907, Validation Accuracy: 0.9822, Loss: 0.0097
Epoch  18 Batch  100/269 - Train Accuracy: 0.9904, Validation Accuracy: 0.9769, Loss: 0.0100
Epoch  18 Batch  150/269 - Train Accuracy: 0.9944, Validation Accuracy: 0.9734, Loss: 0.0085
Epoch  18 Batch  200/269 - Train Accuracy: 0.9982, Validation Accuracy: 0.9721, Loss: 0.0067
Epoch  18 Batch  250/269 - Train Accuracy: 0.9952, Validation Accuracy: 0.9804, Loss: 0.0069
Epoch  19 Batch   50/269 - Train Accuracy: 0.9941, Validation Accuracy: 0.9811, Loss: 0.0084
Epoch  19 Batch  100/269 - Train Accuracy: 0.9920, Validation Accuracy: 0.9797, Loss: 0.0101
Epoch  19 Batch  150/269 - Train Accuracy: 0.9956, Validation Accuracy: 0.9751, Loss: 0.0085
Epoch  19 Batch  200/269 - Train Accuracy: 0.9946, Validation Accuracy: 0.9775, Loss: 0.0067
Epoch  19 Batch  250/269 - Train Accuracy: 0.9922, Validation Accuracy: 0.9818, Loss: 0.0064
Model Trained and Saved
# Number of Epochs          20
# Batch Size                512
# RNN Size                  512
# Number of Layers          2
# Embedding Size            64
# Learning Rate             0.001
# Dropout Keep Probability  0.5

My conclusions from hyperparameter adjustmensts are that for comparable results:

  • if you double the batch size, also doouble the number of epochs
  • if you half the dropout keep probability, also double the network size

Save Parameters

Save the batch_size and save_path parameters for inference.


In [27]:
# Save parameters for checkpoint
helper.save_params(save_path)

Checkpoint


In [28]:
import tensorflow as tf
import numpy as np
import helper
import problem_unittests as tests

_, (source_vocab_to_int, target_vocab_to_int), (source_int_to_vocab, target_int_to_vocab) = helper.load_preprocess()
load_path = helper.load_params()

Sentence to Sequence

To feed a sentence into the model for translation, you first need to preprocess it. Implement the function sentence_to_seq() to preprocess new sentences.

  • Convert the sentence to lowercase
  • Convert words into ids using vocab_to_int
    • Convert words not in the vocabulary, to the <UNK> word id.

In [29]:
def sentence_to_seq(sentence, vocab_to_int):
    """
    Convert a sentence to a sequence of ids
    :param sentence: String
    :param vocab_to_int: Dictionary to go from the words to an id
    :return: List of word ids
    """
    return [
        vocab_to_int[w] if w in vocab_to_int.keys() else vocab_to_int['<UNK>']
        for w in sentence.lower().split(' ')
    ]

tests.test_sentence_to_seq(sentence_to_seq)


Tests Passed

Translate

This will translate translate_sentence from English to French.


In [30]:
translate_sentence = 'he saw a old yellow truck .'


translate_sentence = sentence_to_seq(translate_sentence, source_vocab_to_int)

loaded_graph = tf.Graph()
with tf.Session(graph=loaded_graph) as sess:
    # Load saved model
    loader = tf.train.import_meta_graph(load_path + '.meta')
    loader.restore(sess, load_path)

    input_data = loaded_graph.get_tensor_by_name('input:0')
    logits = loaded_graph.get_tensor_by_name('predictions:0')
    target_sequence_length = loaded_graph.get_tensor_by_name('target_sequence_length:0')
    source_sequence_length = loaded_graph.get_tensor_by_name('source_sequence_length:0')
    keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0')

    translate_logits = sess.run(logits, {input_data: [translate_sentence]*batch_size,
                                         target_sequence_length: [len(translate_sentence)*2]*batch_size,
                                         source_sequence_length: [len(translate_sentence)]*batch_size,
                                         keep_prob: 1.0})[0]

print('Input')
print('  Word Ids:      {}'.format([i for i in translate_sentence]))
print('  English Words: {}'.format([source_int_to_vocab[i] for i in translate_sentence]))

print('\nPrediction')
print('  Word Ids:      {}'.format([i for i in translate_logits]))
print('  French Words: {}'.format(" ".join([target_int_to_vocab[i] for i in translate_logits])))


INFO:tensorflow:Restoring parameters from checkpoints/dev
Input
  Word Ids:      [86, 10, 111, 79, 4, 179, 197]
  English Words: ['he', 'saw', 'a', 'old', 'yellow', 'truck', '.']

Prediction
  Word Ids:      [137, 314, 270, 326, 223, 225, 56, 255, 1]
  French Words: il a conduit le vieux camion jaune . <EOS>

Imperfect Translation

You might notice that some sentences translate better than others. Since the dataset you're using only has a vocabulary of 227 English words of the thousands that you use, you're only going to see good results using these words. For this project, you don't need a perfect translation. However, if you want to create a better translation model, you'll need better data.

You can train on the WMT10 French-English corpus. This dataset has more vocabulary and richer in topics discussed. However, this will take you days to train, so make sure you've a GPU and the neural network is performing well on dataset we provided. Just make sure you play with the WMT10 corpus after you've submitted this project.

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_language_translation.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.

Appendix


In [31]:
import sys
sys.modules.keys()
import types

lines = !conda list
versions = dict()
for line in lines[2:]:
    li = line.split()
    versions[li[0]] = li[1]

def imports():
    print('Modules used in the notebook:\n')
    for val in globals().values():
        if isinstance(val, types.ModuleType):
            name = val.__name__
            ver = ''
            if name in versions:
                ver = versions[name]
            # special case for tensorflow-gpu
            if name + '-gpu' in versions:
                ver = versions[name + '-gpu']
                name = name + '-gpu'
            print('{:25}{:>10}'.format(name, ver))
imports()


Modules used in the notebook:

helper                             
warnings                           
types                              
tensorflow-gpu                1.1.0
builtins                           
problem_unittests                  
builtins                           
numpy                        1.12.1
yapf                         0.17.0
json                               
sys