This program allows the user to see how many transcript effects are present in a specific location of the genome. Large regions of the genome can be queried using the "bucket" feature, which takes the count of effects and condenses it into one bar so that the user can see more information. This information could be very helpful in a clinical setting.
In [19]:
import ga4gh.client as client
c = client.HttpClient("http://1kgenomes.ga4gh.org")
import sys
import collections
import math
%matplotlib inline
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
from ipywidgets import interact, interactive, fixed
from IPython.display import display
import ipywidgets as widgets
In [20]:
dataset = c.search_datasets().next()
for variantSet in c.search_variant_sets(dataset.id):
if variantSet.name == "functional-annotation":
annotation = variantSet
annotationSet = c.search_variant_annotation_sets(variant_set_id=annotation.id).next()
runSearch is called below using ipywidgets. Global variables are initialized for other functions to use and the start and end points are set based on how many buckets the user wants. The function then searches for the transcript effects, given the transcript effect the user is looking for.
The function consists of a loop that is used to separate the search into the amount of buckets, or windowCount, the user wants to find. This makes it easier to visualize large portions of data in a succinct way
The results are sent to countingStatistics for further processing.
In [21]:
def runSearch(startPos, endPos, chromosome, searchTerms, buckets):
global formatSearch
formatSearch = []
for i in range(0,len(searchTerms)):
formatSearch.append({"id":searchTerms[i]})
global windowCount
windowCount = int(buckets)
global initStart
global initEnd
initStart = startPos
initEnd = endPos
global startPoint
global endPoint
startPoint = int(startPos)
endPoint = (int(startPos)+(int(endPos)-int(startPos))/int(buckets))
global yList
global xTickList
yList=[]
xTickList=[]
global allGraphData
allGraphData = []
global count
count=0
# formatSearch loop breaks up the search by different search terms
for soTerms in formatSearch:
# windowCount/bucket loop breaks up the search into multiple smaller searches from region to region
for i in range(0,windowCount):
searchedVarAnns=c.search_variant_annotations(variant_annotation_set_id=annotationSet.id, start=startPoint, end=endPoint, reference_name=chromosome, effects=[soTerms])
idList = []
startEndList = []
for annotation in searchedVarAnns:
idList.append(annotation.variant_id)
countingStats(idList=idList, windowValue=windowCount, yValList=yList, startPos=startPoint, endPos=endPoint)
startPoint+=(int(endPos)-int(startPos))/int(buckets)
endPoint+=(int(endPos)-int(startPos))/int(buckets)
del idList[:]
In [22]:
def countingStats(idList, windowValue, yValList,startPos, endPos):
if len(yList)==0:
yList.append([])
yList[count].append(len(idList))
if len(yList[count])==windowValue:
global startPoint
startPoint = int(initStart)-(int(initEnd)-int(initStart))/windowCount
global endPoint
endPoint = (int(initStart)+(int(initEnd)-int(initStart))/windowCount)-(int(initEnd)-int(initStart))/windowCount
global count
count+=1
if count!=len(formatSearch):
yList.append([])
if len(yList)==len(formatSearch) and len(yList[count-1])==windowValue and count==len(formatSearch):
plotWindowHistogram(xTickList, yList, windowValue, startPos, endPos)
In [25]:
def plotWindowHistogram(xAxisTicks, yAxisValues, windowVals, startPos, endPos):
fig, ax = plt.subplots()
endValues = np.empty([1,2], dtype=np.int32)
endValues[0][0] = startPos
endValues[0][1] = endPos
colors = [str]*20
colors[0] = '#8B0000'
colors[1] = '#FF8C00'
colors[2] = '#8B008B'
colors[3] = '#556B2F'
colors[4] = '#006400'
colors[5] = '#9932CC'
colors[6] = '#BDB76B'
colors[7] = '#707B7C'
colors[8] = '#76D7C4'
colors[9] = '#F5B7B1'
colors[10] = '#1A5276'
colors[11] = '#BA4A00'
colors[12] = '#AED6F1'
colors[13] = '#F9E79F'
colors[14] = '#6E2C00'
# title and graph size formatting
titleEffects=[]
for key, value in searchOntologyDict.iteritems():
for i in range(len(formatSearch)):
if searchOntologyDict[key]==formatSearch[i]['id']:
titleEffects.append(key)
index=0
for j in range(0,len(yAxisValues[index])):
for i in range(0,count):
if j==0:
plt.bar(index, yAxisValues[i][j], width=1, color=colors[i], label=titleEffects[i])
else:
plt.bar(index, yAxisValues[i][j], width=1, color=colors[i])
index+=1
title=""
if len(titleEffects)==1:
ax.set_title(titleEffects[0]+"s"+" from "+str(initStart)+" to "+str(initEnd))
else:
if len(formatSearch)==2:
title+=titleEffects[0]+"s"+" and "+titleEffects[1]+"s"+" "
else:
for i in range(0,len(titleEffects)):
if i!=(len(titleEffects)-1):
title+=titleEffects[i]+"s"+", "
else:
title+="and "+titleEffects[i]+"s"+" "
ax.set_title(title+"from "+str(initStart)+" to "+str(initEnd))
plt.legend(loc='upper right')
plt.rcParams["figure.figsize"] = [15,15]
plt.show()
In [26]:
shortDict = {'intron_variant' : 'SO:0001627', 'feature_truncation' : 'SO:0001906' , 'non_coding_transcript_exon_variant' : 'SO:0001792' , 'non_coding_transcript_variant' : 'SO:0001619', 'transcript_ablation' : 'SO:0001893'}
chromList = ('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18')
global searchOntologyDict
searchOntologyDict = {
'stop_retained_variant' : 'SO:0001567',
'regulatory_region_variant' : 'SO:0001566',
'splice_acceptor_variant' : 'SO:0001574',
'splice_donor_variant' : 'SO:0001575',
'missense_variant' : 'SO:0001583',
'stop_gained' : 'SO:0001587',
'stop_lost' : 'SO:0001578',
'frameshift_variant' : 'SO:0001589',
'coding_sequence_variant' : 'SO:0001580',
'non_coding_transcript_variant' : 'SO:0001619',
'mature_miRNA_variant' : 'SO:0001620',
'NMD_transcript_variant' : 'SO:0001621',
'5_prime_UTR_variant' : 'SO:0001623',
'3_prime_UTR_variant' : 'SO:0001624',
'incomplete_terminal_codon_variant' : 'SO:0001626',
'intron_variant' : 'SO:0001627',
'intergenic_variant' : 'SO:0001628',
'splice_region_variant' : 'SO:0001630',
'upstream_gene_variant' : 'SO:0001631',
'downstream_gene_variant' : 'SO:0001632',
'TF_binding_site_variant' : 'SO:0001782',
'non_coding_transcript_exon_variant' : 'SO:0001792',
'protein_altering_variant' : 'SO:0001818',
'synonymous_variant' : 'SO:0001819',
'inframe_insertion' : 'SO:0001821',
'inframe_deletion' : 'SO:0001822',
'transcript_amplification' : 'SO:0001889',
'regulatory_region_amplification' : 'SO:0001891',
'TFBS_ablation' : 'SO:0001892',
'TFBS_amplification' : 'SO:0001892',
'regulatory_region_ablation' : 'SO:0001894',
'feature_truncation' : 'SO:0001906',
'feature_elongation' : 'SO:0001907',
'start_lost' : 'SO:0002012',
}
multiSelect = widgets.SelectMultiple(
description="Transcript Effects",
options=searchOntologyDict
)
interact(runSearch,
startPos="0",
endPos="100000",
chromosome=chromList,
searchTerms=multiSelect,
buckets="20",
__manual="True"
)