In [1]:
%matplotlib inline
In [3]:
import pandas as pd
import numpy as np
In [4]:
df = pd.DataFrame(np.random.rand(5, 3), index=['a', 'c', 'e', 'f', 'h'],
columns=['one', 'two', 'three'])
In [5]:
df['four']='bar'
In [6]:
df['five'] = df['one'] > 0
In [7]:
df
Out[7]:
In [8]:
df2 = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
In [9]:
df2
Out[9]:
In [11]:
df2.dropna()
Out[11]:
In [13]:
df2.dropna()
Out[13]:
In [16]:
df2.fillna('')
Out[16]:
In [17]:
df2.one
Out[17]:
In [19]:
pd.isnull(df2.four)
Out[19]:
In [20]:
df2.four.notnull()
Out[20]:
In [21]:
df2=df.copy()
In [24]:
df2['timestamp'] = pd.Timestamp('20150808')
In [25]:
df2
Out[25]:
In [26]:
df2.ix[['a','c','h'],['one','timestamp']] = np.nan
In [27]:
df2
Out[27]:
In [28]:
df2.get_dtype_counts()
Out[28]:
In [31]:
df2.get_dtype_counts?
In [32]:
s = pd.Series([1, 2, 3])
In [34]:
s.loc[0]=None
In [35]:
s
Out[35]:
In [36]:
s = pd.Series(["a", "b", "c"])
In [37]:
s.loc[0] = None
In [38]:
s.loc[1] = np.nan
In [39]:
s
Out[39]:
In [41]:
df
Out[41]:
In [42]:
df['one'].sum()
Out[42]:
In [43]:
df.mean(1)
Out[43]:
In [44]:
df.cumsum()
Out[44]:
In [45]:
df.cumsum?
In [46]:
df2
Out[46]:
In [47]:
df2.fillna(0)
Out[47]:
In [48]:
df2['four'].fillna('missing')
Out[48]:
In [49]:
df
Out[49]:
In [50]:
df.fillna(method='pad')
Out[50]:
In [51]:
df.fillna(method='pad', limit=1)
Out[51]:
In [53]:
pd.tseries()
In [ ]: