Out[2]:
nn.Sequential {
  [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> (9) -> (10) -> (11) -> (12) -> (13) -> (14) -> (15) -> (16) -> output]
  (1): cudnn.SpatialConvolution(3 -> 64, 3x3, 1,1, 1,1) without bias
  (2): cudnn.SpatialBatchNormalization
  (3): cudnn.ReLU
  (4): cudnn.SpatialConvolution(64 -> 64, 3x3, 2,2, 1,1) without bias
  (5): cudnn.SpatialBatchNormalization
  (6): cudnn.ReLU
  (7): nn.SpatialMaxPooling(3x3, 2,2, 1,1)
  (8): nn.Sequential {
    [input -> (1) -> (2) -> output]
    (1): nn.Sequential {
      [input -> (1) -> (2) -> (3) -> output]
      (1): nn.ConcatTable {
        input
          |`-> (1): nn.Sequential {
          |      [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]
          |      (1): cudnn.ORConv([1-4] 64 -> 32, 3x3, 1,1, 1,1) without bias, fast mode
          |      (2): cudnn.SpatialBatchNormalization
          |      (3): cudnn.ReLU
          |      (4): cudnn.ORConv([4] 32 -> 32, 3x3, 1,1, 1,1) without bias, fast mode
          |      (5): cudnn.SpatialBatchNormalization
          |    }
           `-> (2): nn.Sequential {
                 [input -> (1) -> (2) -> output]
                 (1): cudnn.ORConv([1-4] 64 -> 32, 1x1) without bias, fast mode
                 (2): cudnn.SpatialBatchNormalization
               }
           ... -> output
      }
      (2): nn.CAddTable
      (3): cudnn.ReLU
    }
    (2): nn.Sequential {
      [input -> (1) -> (2) -> (3) -> output]
      (1): nn.ConcatTable {
        input
          |`-> (1): nn.Sequential {
          |      [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]
          |      (1): cudnn.ORConv([4] 32 -> 32, 3x3, 1,1, 1,1) without bias, fast mode
          |      (2): cudnn.SpatialBatchNormalization
          |      (3): cudnn.ReLU
          |      (4): cudnn.ORConv([4] 32 -> 32, 3x3, 1,1, 1,1) without bias, fast mode
          |      (5): cudnn.SpatialBatchNormalization
          |    }
           `-> (2): nn.Identity
           ... -> output
      }
      (2): nn.CAddTable
      (3): cudnn.ReLU
    }
  }
  (9): nn.Sequential {
    [input -> (1) -> (2) -> output]
    (1): nn.Sequential {
      [input -> (1) -> (2) -> (3) -> output]
      (1): nn.ConcatTable {
        input
          |`-> (1): nn.Sequential {
          |      [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]
          |      (1): cudnn.ORConv([4] 32 -> 64, 3x3, 2,2, 1,1) without bias, fast mode
          |      (2): cudnn.SpatialBatchNormalization
          |      (3): cudnn.ReLU
          |      (4): cudnn.ORConv([4] 64 -> 64, 3x3, 1,1, 1,1) without bias, fast mode
          |      (5): cudnn.SpatialBatchNormalization
          |    }
           `-> (2): nn.Sequential {
                 [input -> (1) -> (2) -> output]
                 (1): cudnn.ORConv([4] 32 -> 64, 1x1, 2,2) without bias, fast mode
                 (2): cudnn.SpatialBatchNormalization
               }
           ... -> output
      }
      (2): nn.CAddTable
      (3): cudnn.ReLU
    }
    (2): nn.Sequential {
      [input -> (1) -> (2) -> (3) -> output]
      (1): nn.ConcatTable {
        input
          |`-> (1): nn.Sequential {
          |      [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]
          |      (1): cudnn.ORConv([4] 64 -> 64, 3x3, 1,1, 1,1) without bias, fast mode
          |      (2): cudnn.SpatialBatchNormalization
          |      (3): cudnn.ReLU
          |      (4): cudnn.ORConv([4] 64 -> 64, 3x3, 1,1, 1,1) without bias, fast mode
          |      (5): cudnn.SpatialBatchNormalization
          |    }
           `-> (2): nn.Identity
           ... -> output
      }
      (2): nn.CAddTable
      (3): cudnn.ReLU
    }
  }
  (10): nn.Sequential {
    [input -> (1) -> (2) -> output]
    (1): nn.Sequential {
      [input -> (1) -> (2) -> (3) -> output]
      (1): nn.ConcatTable {
        input
          |`-> (1): nn.Sequential {
          |      [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]
          |      (1): cudnn.ORConv([4] 64 -> 128, 3x3, 2,2, 1,1) without bias, fast mode
          |      (2): cudnn.SpatialBatchNormalization
         
 
 
    Out[2]:
 |      (3): cudnn.ReLU
          |      (4): cudnn.ORConv([4] 128 -> 128, 3x3, 1,1, 1,1) without bias, fast mode
          |      (5): cudnn.SpatialBatchNormalization
          |    }
           `-> (2): nn.Sequential {
                 [input -> (1) -> (2) -> output]
                 (1): cudnn.ORConv([4] 64 -> 128, 1x1, 2,2) without bias, fast mode
                 (2): cudnn.SpatialBatchNormalization
               }
           ... -> output
      }
      (2): nn.CAddTable
      (3): cudnn.ReLU
    }
    (2): nn.Sequential {
      [input -> (1) -> (2) -> (3) -> output]
      (1): nn.ConcatTable {
        input
          |`-> (1): nn.Sequential {
          |      [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]
          |      (1): cudnn.ORConv([4] 128 -> 128, 3x3, 1,1, 1,1) without bias, fast mode
          |      (2): cudnn.SpatialBatchNormalization
          |      (3): cudnn.ReLU
          |      (4): cudnn.ORConv([4] 128 -> 128, 3x3, 1,1, 1,1) without bias, fast mode
          |      (5): cudnn.SpatialBatchNormalization
          |    }
           `-> (2): nn.Identity
           ... -> output
      }
      (2): nn.CAddTable
      (3): cudnn.ReLU
    }
  }
  (11): nn.Sequential {
    [input -> (1) -> (2) -> output]
    (1): nn.Sequential {
      [input -> (1) -> (2) -> (3) -> output]
      (1): nn.ConcatTable {
        input
          |`-> (1): nn.Sequential {
          |      [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]
          |      (1): cudnn.ORConv([4] 128 -> 256, 3x3, 2,2, 1,1) without bias, fast mode
          |      (2): cudnn.SpatialBatchNormalization
          |      (3): cudnn.ReLU
          |      (4): cudnn.ORConv([4] 256 -> 256, 3x3, 1,1, 1,1) without bias, fast mode
          |      (5): cudnn.SpatialBatchNormalization
          |    }
           `-> (2): nn.Sequential {
                 [input -> (1) -> (2) -> output]
                 (1): cudnn.ORConv([4] 128 -> 256, 1x1, 2,2) without bias, fast mode
                 (2): cudnn.SpatialBatchNormalization
               }
           ... -> output
      }
      (2): nn.CAddTable
      (3): cudnn.ReLU
    }
    (2): nn.Sequential {
      [input -> (1) -> (2) -> (3) -> output]
      (1): nn.ConcatTable {
        input
          |`-> (1): nn.Sequential {
          |      [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]
          |      (1): cudnn.ORConv([4] 256 -> 256, 3x3, 1,1, 1,1) without bias, fast mode
          |      (2): cudnn.SpatialBatchNormalization
          |      (3): cudnn.ReLU
          |      (4): cudnn.ORConv([4] 256 -> 256, 3x3, 1,1, 1,1) without bias, fast mode
          |      (5): cudnn.SpatialBatchNormalization
          |    }
           `-> (2): nn.Identity
           ... -> output
      }
      (2): nn.CAddTable
      (3): cudnn.ReLU
    }
  }
  (12): cudnn.SpatialAveragePooling(7x7, 1,1)
  (13): nn.View(256, 4)
  (14): nn.Max
  (15): nn.Linear(256 -> 1000)
  (16): cudnn.SoftMax
}