Out[2]:
nn.Sequential {
[input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> (9) -> (10) -> (11) -> (12) -> (13) -> (14) -> (15) -> (16) -> output]
(1): cudnn.SpatialConvolution(3 -> 64, 3x3, 1,1, 1,1) without bias
(2): cudnn.SpatialBatchNormalization
(3): cudnn.ReLU
(4): cudnn.SpatialConvolution(64 -> 64, 3x3, 2,2, 1,1) without bias
(5): cudnn.SpatialBatchNormalization
(6): cudnn.ReLU
(7): nn.SpatialMaxPooling(3x3, 2,2, 1,1)
(8): nn.Sequential {
[input -> (1) -> (2) -> output]
(1): nn.Sequential {
[input -> (1) -> (2) -> (3) -> output]
(1): nn.ConcatTable {
input
|`-> (1): nn.Sequential {
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]
| (1): cudnn.ORConv([1-4] 64 -> 32, 3x3, 1,1, 1,1) without bias, fast mode
| (2): cudnn.SpatialBatchNormalization
| (3): cudnn.ReLU
| (4): cudnn.ORConv([4] 32 -> 32, 3x3, 1,1, 1,1) without bias, fast mode
| (5): cudnn.SpatialBatchNormalization
| }
`-> (2): nn.Sequential {
[input -> (1) -> (2) -> output]
(1): cudnn.ORConv([1-4] 64 -> 32, 1x1) without bias, fast mode
(2): cudnn.SpatialBatchNormalization
}
... -> output
}
(2): nn.CAddTable
(3): cudnn.ReLU
}
(2): nn.Sequential {
[input -> (1) -> (2) -> (3) -> output]
(1): nn.ConcatTable {
input
|`-> (1): nn.Sequential {
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]
| (1): cudnn.ORConv([4] 32 -> 32, 3x3, 1,1, 1,1) without bias, fast mode
| (2): cudnn.SpatialBatchNormalization
| (3): cudnn.ReLU
| (4): cudnn.ORConv([4] 32 -> 32, 3x3, 1,1, 1,1) without bias, fast mode
| (5): cudnn.SpatialBatchNormalization
| }
`-> (2): nn.Identity
... -> output
}
(2): nn.CAddTable
(3): cudnn.ReLU
}
}
(9): nn.Sequential {
[input -> (1) -> (2) -> output]
(1): nn.Sequential {
[input -> (1) -> (2) -> (3) -> output]
(1): nn.ConcatTable {
input
|`-> (1): nn.Sequential {
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]
| (1): cudnn.ORConv([4] 32 -> 64, 3x3, 2,2, 1,1) without bias, fast mode
| (2): cudnn.SpatialBatchNormalization
| (3): cudnn.ReLU
| (4): cudnn.ORConv([4] 64 -> 64, 3x3, 1,1, 1,1) without bias, fast mode
| (5): cudnn.SpatialBatchNormalization
| }
`-> (2): nn.Sequential {
[input -> (1) -> (2) -> output]
(1): cudnn.ORConv([4] 32 -> 64, 1x1, 2,2) without bias, fast mode
(2): cudnn.SpatialBatchNormalization
}
... -> output
}
(2): nn.CAddTable
(3): cudnn.ReLU
}
(2): nn.Sequential {
[input -> (1) -> (2) -> (3) -> output]
(1): nn.ConcatTable {
input
|`-> (1): nn.Sequential {
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]
| (1): cudnn.ORConv([4] 64 -> 64, 3x3, 1,1, 1,1) without bias, fast mode
| (2): cudnn.SpatialBatchNormalization
| (3): cudnn.ReLU
| (4): cudnn.ORConv([4] 64 -> 64, 3x3, 1,1, 1,1) without bias, fast mode
| (5): cudnn.SpatialBatchNormalization
| }
`-> (2): nn.Identity
... -> output
}
(2): nn.CAddTable
(3): cudnn.ReLU
}
}
(10): nn.Sequential {
[input -> (1) -> (2) -> output]
(1): nn.Sequential {
[input -> (1) -> (2) -> (3) -> output]
(1): nn.ConcatTable {
input
|`-> (1): nn.Sequential {
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]
| (1): cudnn.ORConv([4] 64 -> 128, 3x3, 2,2, 1,1) without bias, fast mode
| (2): cudnn.SpatialBatchNormalization
Out[2]:
| (3): cudnn.ReLU
| (4): cudnn.ORConv([4] 128 -> 128, 3x3, 1,1, 1,1) without bias, fast mode
| (5): cudnn.SpatialBatchNormalization
| }
`-> (2): nn.Sequential {
[input -> (1) -> (2) -> output]
(1): cudnn.ORConv([4] 64 -> 128, 1x1, 2,2) without bias, fast mode
(2): cudnn.SpatialBatchNormalization
}
... -> output
}
(2): nn.CAddTable
(3): cudnn.ReLU
}
(2): nn.Sequential {
[input -> (1) -> (2) -> (3) -> output]
(1): nn.ConcatTable {
input
|`-> (1): nn.Sequential {
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]
| (1): cudnn.ORConv([4] 128 -> 128, 3x3, 1,1, 1,1) without bias, fast mode
| (2): cudnn.SpatialBatchNormalization
| (3): cudnn.ReLU
| (4): cudnn.ORConv([4] 128 -> 128, 3x3, 1,1, 1,1) without bias, fast mode
| (5): cudnn.SpatialBatchNormalization
| }
`-> (2): nn.Identity
... -> output
}
(2): nn.CAddTable
(3): cudnn.ReLU
}
}
(11): nn.Sequential {
[input -> (1) -> (2) -> output]
(1): nn.Sequential {
[input -> (1) -> (2) -> (3) -> output]
(1): nn.ConcatTable {
input
|`-> (1): nn.Sequential {
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]
| (1): cudnn.ORConv([4] 128 -> 256, 3x3, 2,2, 1,1) without bias, fast mode
| (2): cudnn.SpatialBatchNormalization
| (3): cudnn.ReLU
| (4): cudnn.ORConv([4] 256 -> 256, 3x3, 1,1, 1,1) without bias, fast mode
| (5): cudnn.SpatialBatchNormalization
| }
`-> (2): nn.Sequential {
[input -> (1) -> (2) -> output]
(1): cudnn.ORConv([4] 128 -> 256, 1x1, 2,2) without bias, fast mode
(2): cudnn.SpatialBatchNormalization
}
... -> output
}
(2): nn.CAddTable
(3): cudnn.ReLU
}
(2): nn.Sequential {
[input -> (1) -> (2) -> (3) -> output]
(1): nn.ConcatTable {
input
|`-> (1): nn.Sequential {
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> output]
| (1): cudnn.ORConv([4] 256 -> 256, 3x3, 1,1, 1,1) without bias, fast mode
| (2): cudnn.SpatialBatchNormalization
| (3): cudnn.ReLU
| (4): cudnn.ORConv([4] 256 -> 256, 3x3, 1,1, 1,1) without bias, fast mode
| (5): cudnn.SpatialBatchNormalization
| }
`-> (2): nn.Identity
... -> output
}
(2): nn.CAddTable
(3): cudnn.ReLU
}
}
(12): cudnn.SpatialAveragePooling(7x7, 1,1)
(13): nn.View(256, 4)
(14): nn.Max
(15): nn.Linear(256 -> 1000)
(16): cudnn.SoftMax
}