In [ ]:
from IPython.core.display import HTML
HTML("<style>.container { width:90% !important; }</style>")
In [ ]:
from sys import argv
import glob
import os
import math
import numpy as np
import pandas as pd
import scipy.stats as sps
import statsmodels as sm
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
In [ ]:
sns.set_context('notebook')
sns.set_style('darkgrid')
# sns.set_style('white')
# sns.set_style('ticks')
In [ ]:
numbermap = {'five':5, 'six':6, 'seven':7, 'eight':8, 'nine':9}
modelmap = {'halfD':.5, 'twothirdsD':.666, 'sixtenthsD':.6, 'sevententhsD':.7,
'threequartersD':.75, 'eighttenthsD':.8, 'ninetenthsD':.9, 'oneD':1}
In [ ]:
basepath = os.getcwd()
In [ ]:
iterations = os.getcwd().split('_')[-2][0:-10]
In [ ]:
names = []
for fname in glob.glob('*ks_fractions.csv'):
# for fname in glob.glob('*ks_fractions*.csv'):
names.append(fname)
fract_data = pd.DataFrame()
for name in names:
genotype = name.split('_')[0]
stdev = numbermap[name.split('_')[3]]
temp = pd.read_csv(name, header=0, names=['model','less','greater'])
temp['stage'] = genotype
temp['stdev'] = stdev
temp['dentnumber'] = int(name.split('_')[1][0:2])
fract_data = pd.concat([fract_data, temp], ignore_index=True)
os.chdir(basepath)
fract_data['modelnumber'] = fract_data['model'].map(modelmap)
fract_data.head()
In [ ]:
### the real graphs
In [ ]:
frac = 99
passes = fract_data[fract_data.greater >= frac]
with sns.axes_style('darkgrid'):
fig, ax = plt.subplots(figsize=(15,5))
ax.scatter(passes[passes.stage=='Larvae'].dentnumber, passes[passes.stage=='Larvae'].modelnumber,
color='r',marker='o')
ax.scatter(passes[passes.stage=='yw'].dentnumber, passes[passes.stage=='yw'].modelnumber,
color='k',marker='o')
ax.set_xticks(np.arange(0,18))
ax.set_yticks([0.6, 0.667, 0.7, 0.75, 0.8, 0.9, 1.0, 1.1])
ax.set_xlim(1.5,12.5)
ax.set_ylim(0.59,1.1)
ax.set_title('alpha values per denticle number, where at least %i of simulations pass (%s iterations)' % (frac, iterations))
ax.set_ylabel('model (alpha value)')
ax.set_xlabel('denticle number')
sns.despine()
fig.savefig(basepath + '/alpha values per denticle number, where at least %i of simulations pass (%s iterations)_grid.svg' % (frac, iterations))
In [ ]:
frac = 99
passes = fract_data[fract_data.greater >= frac]
with sns.axes_style('ticks'):
fig, ax = plt.subplots(figsize=(15,5))
ax.scatter(passes[passes.stage=='Larvae'].dentnumber, passes[passes.stage=='Larvae'].modelnumber,
color='r',marker='o')
ax.scatter(passes[passes.stage=='yw'].dentnumber, passes[passes.stage=='yw'].modelnumber,
color='k',marker='o')
ax.set_xticks(np.arange(0,18))
ax.set_yticks([0.6, 0.667, 0.7, 0.75, 0.8, 0.9, 1.0, 1.1])
ax.set_xlim(1.5,12.5)
ax.set_ylim(0.59,1.1)
ax.set_title('alpha values per denticle number, where at least %i of simulations pass (%s iterations)' % (frac, iterations))
ax.set_ylabel('model (alpha value)')
ax.set_xlabel('denticle number')
sns.despine()
fig.savefig(basepath +'/alpha values per denticle number, where at least %i of simulations pass (%s iterations).svg' % (frac, iterations))
In [ ]:
fract_data.describe()
In [ ]:
frac = 95
passes = fract_data[fract_data.greater >= frac]
fig, ax = plt.subplots(figsize=(15,5))
ax.set_xticks(np.arange(0,15))
ax.scatter(passes[passes.stage=='Larvae'].dentnumber, passes[passes.stage=='Larvae'].modelnumber,
color='k',marker='o')
ax.scatter(passes[passes.stage=='yw'].dentnumber, passes[passes.stage=='yw'].modelnumber,
color='r',marker='o')
ax.set_ylim(0,100)
sns.despine()
fig.savefig('alpha values per denticle number, where at least %i of simulations pass (1000 iterations).png' % frac)
In [ ]:
with sns.axes_style('ticks'):
frac = 95
passes = fract_data[fract_data.greater >= frac]
fig, ax = plt.subplots(figsize=(15,5))
ax.set_xticks(np.arange(0,15))
ax.scatter(passes[passes.stage=='Larvae'].dentnumber, passes[passes.stage=='Larvae'].modelnumber,
color='k',marker='o')
ax.scatter(passes[passes.stage=='yw'].dentnumber, passes[passes.stage=='yw'].modelnumber,
color='r',marker='o')
ax.set_title('alpha values per denticle number, where at least %i of simulations pass (1000 iterations)' % frac)
ax.set_ylabel('model (alpha value)')
ax.set_xlabel('denticle number')
sns.despine()
fig.savefig('alpha values per denticle number, where at least %i of simulations pass (1000 iterations).png' % frac)