3
{'N_features': 'all', 'N_obs': 'all', 'bin_class_type': 1, 'inp_dsname': 'breast_cancer', 'max_depth': 5, 'n_RIT': 20, 'n_bootstraps': 20, 'n_estimators': 2, 'n_estimators_bootstrap': 5, 'n_iter': 5, 'n_trials': 5, 'noisy_split': False, 'num_splits': 2, 'propn_n_samples': 0.2, 'train_split_propn': 0.8}
{'N_features': 'all', 'N_obs': 'all', 'bin_class_type': 1, 'inp_dsname': 'breast_cancer', 'max_depth': 5, 'n_RIT': 20, 'n_bootstraps': 20, 'n_estimators': 4, 'n_estimators_bootstrap': 5, 'n_iter': 5, 'n_trials': 5, 'noisy_split': False, 'num_splits': 2, 'propn_n_samples': 0.2, 'train_split_propn': 0.8}
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
<ipython-input-5-654775170e55> in <module>()
24 noisy_split=spec_comb[i]['noisy_split'],
25 num_splits=spec_comb[i]['num_splits'],
---> 26 n_estimators_bootstrap=spec_comb[i]['n_estimators_bootstrap'])
/home/runjing_liu/Documents/iRF/scikit-learn/sklearn/tree/irf_utils.py in run_iRF(X_train, X_test, y_train, y_test, K, n_estimators, B, random_state_classifier, propn_n_samples, bin_class_type, M, max_depth, noisy_split, num_splits, n_estimators_bootstrap)
1047 X_train=X_train_rsmpl,
1048 X_test=X_test,
-> 1049 y_test=y_test)
1050
1051 # Update the rf bootstrap output dictionary
/home/runjing_liu/Documents/iRF/scikit-learn/sklearn/tree/irf_utils.py in get_rf_tree_data(rf, X_train, X_test, y_test)
481 y_test=y_test,
482 dtree=dtree,
--> 483 root_node_id=0)
484
485 # Append output to our combined random forest outputs dict
/home/runjing_liu/Documents/iRF/scikit-learn/sklearn/tree/irf_utils.py in _get_tree_data(X_train, X_test, y_test, dtree, root_node_id)
302 # Start with a range over the total number of features and
303 # subset the relevant indices from the raw indices array
--> 304 node_features_idx = all_features_idx[np.array(node_features_raw_idx)]
305
306 # Count the unique number of features used
IndexError: index 992 is out of bounds for axis 1 with size 30