In this notebook, opencv face detection will be applied to HDMI input images.
To run all cells in this notebook a HDMI input source and HDMI output monitor are required.
References:
https://github.com/Itseez/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml https://github.com/Itseez/opencv/blob/master/data/haarcascades/haarcascade_eye.xml
In [1]:
from pynq.overlays.base import BaseOverlay
from pynq.lib.video import *
base = BaseOverlay("base.bit")
hdmi_in = base.video.hdmi_in
hdmi_out = base.video.hdmi_out
In [2]:
hdmi_in.configure(PIXEL_RGB)
hdmi_out.configure(hdmi_in.mode, PIXEL_RGB)
hdmi_in.start()
hdmi_out.start()
Out[2]:
In [3]:
import PIL.Image
frame = hdmi_in.readframe()
img = PIL.Image.fromarray(frame)
img.save("/home/xilinx/jupyter_notebooks/base/video/data/face_detect.jpg")
img
Out[3]:
In [4]:
import cv2
import numpy as np
frame = hdmi_in.readframe()
face_cascade = cv2.CascadeClassifier(
'/home/xilinx/jupyter_notebooks/base/video/data/'
'haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier(
'/home/xilinx/jupyter_notebooks/base/video/data/'
'haarcascade_eye.xml')
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x,y,w,h) in faces:
cv2.rectangle(frame,(x,y),(x+w,y+h),(255,0,0),2)
roi_gray = gray[y:y+h, x:x+w]
roi_color = frame[y:y+h, x:x+w]
eyes = eye_cascade.detectMultiScale(roi_gray)
for (ex,ey,ew,eh) in eyes:
cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)
In [5]:
hdmi_out.writeframe(frame)
In [6]:
img = PIL.Image.fromarray(frame)
img.save("/home/xilinx/jupyter_notebooks/base/video/data/face_detect.jpg")
img
Out[6]:
In [7]:
hdmi_out.stop()
hdmi_in.stop()
del hdmi_in, hdmi_out