01 SEP 2017
Wayne H Nixalo
This notebook is a code along of neural-sr.ipynb to make sure I can get super resolution as done in class working properly.
In [6]:
%matplotlib inline
# import importlib
# import utils2; importlib.reload(utils2)
import os, sys
sys.path.insert(1, os.path.join('../utils'))
from utils2 import *
from scipy.optimize import fmin_l_bfgs_b
from scipy.misc import imsave
from keras import metrics
from vgg16_avg import VGG16_Avg
In [7]:
from bcolz_array_iterator import BcolzArrayIterator
In [8]:
limit_mem()
In [9]:
path = '../data/'
All code is identical to the implementation shown in the neural-style notebook, with the exception of the BcolzArrayIterator and training implentation.
In [10]:
rn_mean = np.array([123.68, 116.779, 103.939], dtype=np.float32)
preproc = lambda x: (x - rn_mean)[:, :, :, ::-1]
deproc = lambda x,s: np.clip(x.reshape(s)[:, :, :, ::-1] + rn_mean, 0, 255)
We can't load Imagenet into memory, so we open the files and then pass them to the generator BcolzArrayIterator.
In [11]:
arr_lr = bcolz.open(path + 'trn_resized_72.bc')
arr_hr = bcolz.open(path + 'trn_resized_288.bc')
In [12]:
pars = {'verbose':0, 'callbacks': [TQDMNotebookCallback(leave_inner=True)]}
In [27]:
def conv_block(x, filters, size, stride=(2,2), mode='same', act=True):
x = Convolution2D(filters, size, size, subsample=stride, border_mode=mode)(x)
x = BatchNormalization(mode=2)(x)
return Activation('relu')(x) if act else x
def res_block(ip, nf=64):
x = conv_block(ip, nf, 3, (1,1))
x = conv_block(x, nf, 3, (1,1), act=False)
return merge([x, ip], mode='sum')
def up_block(x, filters, size):
x = keras.layers.UpSampling2D()(x)
x = Convolution2D(filters, size, size, border_mode='same')(x)
x = BatchNormalization(mode=2)(x)
return Activation('relu')(x)
def get_model(arr):
inp = Input(arr.shape[1:])
x = conv_block(inp, 64, 9, (1,1))
for i in range(4): x = res_block(x)
x = up_block(x, 64, 3)
x = up_block(x, 64, 3)
x = Convolution2D(3, 9, 9, activation='tanh', border_mode='same')(x)
outp = Lambda(lambda x: (x+1) * 127.5)(x)
return inp, outp
def get_outp(m, λn): return m.get_layer(f'block{λn}_conv2').output
def mean_sqr_b(diff):
dims = list(range(1, K.ndim(diff)))
return K.expand_dims(K.sqrt(K.mean(diff**2, dims)), 0)
def content_fn(x):
res = 0; n=len(w)
for i in range(n): res += mean_sqr_b(x[i] - x[i+n]) * w[i]
return res
In [28]:
inp, outp = get_model(arr_lr)
shp = arr_hr.shape[1:]
vgg_inp = Input(shp)
vgg = VGG16(include_top=False, input_tensor=Lambda(preproc)(vgg_inp))
for λ in vgg.layers: λ.trainable=False
In [29]:
vgg_content = Model(vgg_inp, [get_outp(vgg, o) for o in [1,2,3]])
vgg1 = vgg_content(vgg_inp)
vgg2 = vgg_content(outp)
In [30]:
w = [0.1, 0.8, 0.1]
In [31]:
m_sr = Model([inp, vgg_inp], Lambda(content_fn)(vgg1 + vgg2))
m_sr.compile('adam', 'mse')
Our training implementation has been altered to accomodate the BcolzArrayIterator.
We're unable to use model.fit_generator()
because that function call expects the generator to return a tuple of inputs and targts.
Our generator however yields two inputs. We can work around this by seperately pulling out our inputs from the generator and then using model.train_on_batch()
with our inputs from the generator and our dummy targets. model.train_on_batch()
simply does one gradient update on the batch of data.
This technique of creating your own training loop is useful when you're working with various iterators or complicated inputs that don't conform to keras' standard fitting methods.
In [64]:
def train(bs, niter=10):
targ = np.zeros((bs, 1))
bc = BcolzArrayIterator(arr_hr, arr_lr, batch_size=bs)
for i in range(niter):
hr, lr = next(bc)
m_sr.train_on_batch([lr[:bs], hr[:bs]], targ)
In [73]:
bc = BcolzArrayIterator(arr_hr, arr_lr)
In [72]:
len(arr_hr)
Out[72]:
In [65]:
its = len(arr_hr)//8; its
Out[65]:
NOTE: Batch size must be a multiple of the chunk length.
so Im guessing chunk length is the size of what I'm dividing arr_hr
by
In [70]:
temp = BcolzArrayIterator(arr_hr, arr_lr, batch_size = 160)
In [ ]:
In [67]:
%time train (1, 200)
In [57]:
len(arr_hr)
Out[57]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]: