CIFAR-10 -- replicating: https://github.com/fastai/fastai/blob/master/courses/dl1/cifar10.ipynb
In [1]:
%matplotlib inline
%reload_ext autoreload
%autoreload 2
In [2]:
from fastai.conv_learner import *
PATH = "data/cifar10/"
os.makedirs(PATH, exist_ok=True)
In [3]:
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
stats = (np.array([ 0.4914 , 0.48216, 0.44653]), np.array([ 0.24703, 0.24349, 0.26159]))
In [4]:
def get_data(sz, bs):
tfms = tfms_from_stats(stats, sz, aug_tfms=[RandomFlipXY()], pad = sz//8)
return ImageClassifierData.from_paths(PATH, val_name='test', tfms=tfms, bs=bs)
In [5]:
bs = 64
In [6]:
data = get_data(32, 4)
In [7]:
x, y = next(iter(data.trn_dl))
In [8]:
plt.imshow(data.trn_ds.denorm(x)[0]);
In [12]:
plt.imshow(data.trn_ds.denorm(x)[1]);
In [9]:
from fastai.models.cifar10.resnext import resnext29_8_64
model = resnext29_8_64()
bmodel = BasicModel(model.cuda(), name='cifar10_rn29_8_64')
In [10]:
data = get_data(8, bs*4)
In [11]:
learn = ConvLearner(data, bmodel)
learn.unfreeze()
In [12]:
lr = 1e-2; wd = 5e-4
In [13]:
learn.lr_find()
In [14]:
learn.sched.plot()
In [15]:
%time learn.fit(lrs=lr, n_cycle=1)
In [16]:
learn.fit(lr, 2, cycle_len=1)
In [17]:
learn.fit(lr, 3, cycle_len=1, cycle_mult=2, wds=wd)
In [18]:
learn.save('8x8_8')
In [ ]:
learn.load('8x8_8')
In [19]:
learn.set_data(get_data(16, bs*2))
In [20]:
%time learn.fit(1e-3, 1, wds=wd)
In [21]:
# setting batch size from 128 to 64, to try & avoid GPU MEM error
learn.set_data(get_data(16, bs))
In [22]:
learn.unfreeze()
In [23]:
learn.lr_find()
In [24]:
learn.sched.plot()
In [25]:
learn.save('16x16_8')
In [ ]:
data = get_data(8, bs*4)
learn.load('16x16_8')
In [ ]:
lr = le-2
In [ ]:
learn.fit(lr, 2, cycle_len=1, wds=wd)
In [ ]:
learn.fit(lr, 3, cycle_len=1, cycle_mult=2, wds=wd)
In [ ]:
learn.save('16x16_8')
In [ ]:
learn.load('16x16_8')
In [ ]:
learn.set_data(get_data(24, bs))
In [ ]:
learn.fit(1e-2, 1, wds=wd)
In [ ]:
learn.unfreeze()
In [ ]:
learn.fit(lr, 1, cycle_len=1, wds=wd)
In [ ]:
learn.fit(lr, 3, cycle_len=1, cycle_mult=2, wds=wd)
In [ ]:
learn.save('24x24_8')
In [ ]:
log_preds, y = learn.TTA()
metrics.log_loss(y, np.exp(log_preds)), accuracy(log_preds, y)
In [ ]:
learn.load('24x24_8')
In [ ]:
learn.set_data(get_data(32, bs))
In [ ]:
learn.fit(1e-2, 1, wds=wd)
In [ ]:
learn.unfreeze()
In [ ]:
learn.fit(lr, 3, cycle_len=1, cycle_mult=2, wds=wd)
In [ ]:
learn.fit(lr, 3, cycle_len=4, wds=wd)
In [ ]:
log_preds, y = learn.TTA()
metrics.log_loss(y, np.exp(log_preds)), accuracy(log_preds, y)
In [ ]:
learn.save('32x32_8')