In [1]:
    
%matplotlib inline
    
In [2]:
    
import pandas as pd
import matplotlib.pyplot as plt
    
In [3]:
    
array_vals = pd.read_csv("data-readonly/transportable_array/data_tohoku_norm_transpose.csv", header=None)
    
In [4]:
    
array_vals.dtypes
    
    Out[4]:
In [5]:
    
v = pd.date_range("2:46PM", "6:46PM", freq="1s")
v -= v[0]
array_vals["time"] = v
array_vals.set_index("time", inplace=True)
    
In [6]:
    
array_vals.shape
    
    Out[6]:
In [7]:
    
date_range = pd.date_range("2:46PM", "6:46PM", freq="1s")
    
In [8]:
    
date_range - date_range[0]
    
    Out[8]:
In [9]:
    
array_vals.loc["03:30:12":"03:45:15"][0]
    
    Out[9]:
In [10]:
    
array_vals[0]
    
    Out[10]:
In [11]:
    
plt.plot(array_vals[0])
    
    Out[11]:
    
In [12]:
    
locations = pd.read_csv("/srv/nbgrader/data/transportable_array/location.txt",
                        delimiter="\t", names =["longitude", "latitude", "a", "b"])
del locations["a"], locations["b"]
    
In [13]:
    
locations.iloc[0]
    
    Out[13]:
We'll get to proper maps next week.
In [14]:
    
plt.scatter(locations["longitude"], locations["latitude"])
    
    Out[14]:
    
In [15]:
    
import ipywidgets
    
In [16]:
    
array_vals.max().max()
    
    Out[16]:
In [17]:
    
@ipywidgets.interact(station = (0, 437, 1))
def make_plot(station = 0):
    plt.subplot(211)
    plt.plot(array_vals[station])
    plt.xlim(0, 14000)
    plt.ylim(-1.0, 1.0)
    plt.subplot(212)
    plt.scatter(locations.iloc[station]["longitude"], locations.iloc[station]["latitude"])
    plt.xlim(-180, 180)
    plt.ylim(-90, 90)
    
    
 
 
In [18]:
    
from IPython.display import Audio
    
In [19]:
    
normed = (array_vals[0] - array_vals[0].min())/(array_vals[0].max() - array_vals[0].min()) * 2 - 1
Audio(normed, rate=44100/8)
    
    Out[19]: