Show that
$$ tanh(a)=2 \sigma (2a) - 1 $$Then show
$$ y(x, \boldsymbol w) = w_0 + \Sigma_{j=1}^M w_j \sigma ( \frac{x - \mu_j}{s} ) $$is equivalent to a linear combination of 'tanh' functions of the form
$$ y(x, \boldsymbol u) = w_0 + \Sigma_{j=1}^M u_j tanh ( \frac{x - \mu_j}{s} ) $$solve for
$$ w * \sigma(z) = u * tanh(z) $$