In [1]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

In [3]:
submissions = pd.read_csv("sample_submission/sample_submission_stg1.csv")

In [4]:
submissions.head()


Out[4]:
image ALB BET DOL LAG NoF OTHER SHARK YFT
0 img_00005.jpg 0.455003 0.052938 0.030969 0.017734 0.123081 0.079142 0.046585 0.194283
1 img_00007.jpg 0.455003 0.052938 0.030969 0.017734 0.123081 0.079142 0.046585 0.194283
2 img_00009.jpg 0.455003 0.052938 0.030969 0.017734 0.123081 0.079142 0.046585 0.194283
3 img_00018.jpg 0.455003 0.052938 0.030969 0.017734 0.123081 0.079142 0.046585 0.194283
4 img_00027.jpg 0.455003 0.052938 0.030969 0.017734 0.123081 0.079142 0.046585 0.194283

In [5]:
submissions.shape


Out[5]:
(1000, 9)

In [6]:
columns = list(submissions.columns)

In [13]:
random = pd.DataFrame(np.random.random_sample(size=(1000,9)),columns = columns)

In [14]:
random.head()


Out[14]:
image ALB BET DOL LAG NoF OTHER SHARK YFT
0 0.839579 0.855175 0.945205 0.141212 0.579779 0.983546 0.390744 0.656121 0.911831
1 0.908327 0.647327 0.291706 0.970818 0.729577 0.717430 0.863081 0.262225 0.220212
2 0.936683 0.177590 0.862677 0.934528 0.381837 0.655252 0.787673 0.572202 0.101325
3 0.318607 0.212341 0.886886 0.140888 0.156922 0.518755 0.203880 0.233374 0.611417
4 0.169347 0.871152 0.130755 0.717898 0.664626 0.123841 0.889616 0.213999 0.002460

In [15]:
random["image"] = submissions["image"]

In [16]:
random.to_csv("baseline.csv",index = False)

Kaggle score : 2.41669


In [ ]: