In [2]:
# Primes
using Primes
# ToDo: Generalize this so that it can take pregenerated sieves as input.
function primes(limit::Int)::Vector{Int}
sieve = Int[2]
for odd ∈ 3:2:limit # Consider only odd numbers
isprime = true
for prime ∈ sieve
prime * prime > odd && break # No need to check beyond this
odd % prime == 0 && (isprime = false)
end
isprime && push!(sieve, odd)
end
return sieve
end
isprime(n::Int) = (primes(n)[end] == n)
function nthprime(n::Int)::Int
upperbound = Int(floor(n * (log(n) + log(log(n)))))
return primes(upperbound)[n]
end
# Fibonacci
# ToDo: Generalize this to return Int or Int128 if in range.
# Thought: The Binet's formula computation can be optimized by storing ϕ^n and using it to compute ϕ^(n+1).
function fibonacci_Binet(index::Int)::BigInt
# Uses Binet's formula
sqrt5 = √5
ϕ = big(1 + sqrt5) / 2
ψ = big(1 - sqrt5) / 2
return round(BigInt, (ϕ^index - ψ^index) / sqrt5)
end
# Factorization
function primefactorize(n::Int)
sieve = primes(n) # Have to figure out a way to not generate so many primes
factors = Int[]
powers = Int[]
for prime ∈ sieve
prime > n && break
pow = 0
while n % prime == 0
n ÷= prime
pow += 1
end
if pow > 0
push!(factors, prime)
push!(powers, pow)
end
end
return collect(zip(factors, powers))
end
function numdivisors(n::Int)::Int
n == 1 && return 1
factorization = primefactorize(n)
count = 1
return prod(map(x -> x[2] + 1, factorization))
end
function sumdivisors(n::Int)::Int
n == 1 && (return 1)
# https://www.xarg.org/2016/06/calculate-the-sum-of-divisors/
factored = primefactorize(n)
return prod((factor[1]^(factor[2] + 1) - 1) ÷ (factor[1] - 1) for factor in factored)
end
# sumdivisors(n::Int)::Int = sum(i for i ∈ 1:n if n % i == 0) # Slow
# The following are implemented in Julia.Base
# # The ith position gives the coefficient of the (i-1)th power of the base.
# function digits(n::Int, base::Int)::Vector{Int}
# d = Int[]
# while n > 0
# push!(d, n % base)
# n ÷= base
# end
# return d
# end
# # Combinatorics
# function binomial(n::Int, k::Int)::Int
# product = 1
# for i ∈ 0:(k - 1)
# product *= (n - i) / (k - i)
# end
# return Int(product)
# end
# count_digits(n::Int, base::Int) = length(digits(n, base))
Out[2]:
In [21]:
function multiples(limit::Int)::Int
sum::Int = 0
for i ∈ 3:limit
if i%3 == 0 || i%5 == 0
sum += i
end
end
return sum
end
@time println(multiples(999))
Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with $ 1 $ and $ 2 $, the first 10 terms will be $ 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, … $.
By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.
In [28]:
# Slower
function fibonaccieven_Binet(limit::Int)::Int
Σ = 0
i = 0
while true
i += 3
f_i = fibonacci_Binet(i)
f_i ≥ limit && break
Σ += f_i
end
return Σ
end
function fibonaccieven_iter(limit::Int)::Int
Σ::Int = 10
a::Int = 2
b::Int = 8
while true
new = 4b + a
new ≥ limit && break
(a, b) = (b, new)
Σ += b
end
return Σ
end
@time println(fibonaccieven_Binet(4_000_000))
@time println(fibonaccieven_iter(4_000_000))
In [4]:
# The idea is to keep dividing by the small divisors so that we are left with the largest prime number.
function maxprimefactor(n::Int)::Int
# Special case: 2^k is a factor
while n ≠ 2 && n % 2 == 0
n ÷= 2
end
# Odd prime factors p^k
i::Int = 3
while i * i ≤ n
if isprime(i) && n % i == 0
n ÷= i
else
i += 2
end
end
return n
end
@time println(maxprimefactor(600851475143))
Note that $ 999 ⋅ 998 = 998 ⋅ 999 $, so we only need to check the upper diagonal matrix.
In [5]:
function reverse(n::Int)::Int
decimal = digits(n)
rev::Int = 0
for d ∈ decimal
rev = 10 * rev + d
end
return rev
end
ispalindrome(n::Int)::Bool = (n == reverse(n))
function maxpalindromeproduct(max_decimal_digits::Int)::Int
max::Int = 10^max_decimal_digits - 1
palindromes = Int[]
for i ∈ Iterators.reverse(1:max), j ∈ Iterators.reverse(i:max)
n::Int = i * j
# The i*max cannot go below the any of the palindromes found.
length(palindromes) > 0 && i * max ≤ palindromes[1] && break
ispalindrome(n) && push!(palindromes, n)
end
return maximum(palindromes)
end
@time println(maxpalindromeproduct(3))
In [6]:
@time println(2^4 * 3^2 * 5 * 7 * 11 * 13 * 17 * 19)
The sum of the squares of the first ten natural numbers is $ 1^2 + 2^2 + ⋯ + 10^2 = 385 $.
The square of the sum of the first ten natural numbers is $ (1 + 2 + ⋯ + 10)^2 = 55^2 = 3025 $.
Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is $ 3025 - 385 = 2640 $.
Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.
In [7]:
@time println(100 * (100 + 1) * (3 * 100^2 - 100 - 2) ÷ 12)
The trick is to use upper bound for the nth prime as given here.
In [6]:
@time println(nthprime(10001))
The four adjacent digits in the 1000-digit number that have the greatest product are $ 9 × 9 × 8 × 9 = 5832 $.
73167176531330624919225119674426574742355349194934
96983520312774506326239578318016984801869478851843
85861560789112949495459501737958331952853208805511
12540698747158523863050715693290963295227443043557
66896648950445244523161731856403098711121722383113
62229893423380308135336276614282806444486645238749
30358907296290491560440772390713810515859307960866
70172427121883998797908792274921901699720888093776
65727333001053367881220235421809751254540594752243
52584907711670556013604839586446706324415722155397
53697817977846174064955149290862569321978468622482
83972241375657056057490261407972968652414535100474
82166370484403199890008895243450658541227588666881
16427171479924442928230863465674813919123162824586
17866458359124566529476545682848912883142607690042
24219022671055626321111109370544217506941658960408
07198403850962455444362981230987879927244284909188
84580156166097919133875499200524063689912560717606
05886116467109405077541002256983155200055935729725
71636269561882670428252483600823257530420752963450
Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product?
In [9]:
n = 7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450
function largest_product(n::BigInt, adjacentdigits::Int)::Int
decimal = digits(n)
productmax::Int = 1
for i ∈ 1:(length(decimal) - adjacentdigits + 1)
product::Int = 1
for k ∈ 0:(adjacentdigits - 1)
product *= decimal[i + k]
end
product > productmax && (productmax = product)
end
return productmax
end
@time println(largest_product(n, 13))
Let $ p $ be the given perimeter of the triangle. We parameterize the sides as $ a = m^2 - n^2, b = 2mn, c = m^2 + n^2 $, where $ m > n > 0 $. Using the fact that $ a + b + c = p $, we get $ 2 m (m + n) = p $.
Now we need good bounds for $ m, n $ in order to reduce the search space. Note that for $ n $ to be maximum, we must have $ m = n + 1 $, so we get the estimate $ n ≤ \frac{\sqrt{p}}{2} $. On the other hand, for $ m $ to maximum, we require $ n = 1 $, so we get the estimate $ m ≤ \sqrt{\frac{p}{2}} $.
Finally, the required product after simplification is $ p n (m - n) (m^2 + n^2) $.
References:
In [10]:
# Using a parameterization of Pythagorean triplets
function special_Pythagorean_triplet(perimeter::Int)::Int
for n ∈ 1:(isqrt(perimeter) ÷ 2), m ∈ n:isqrt(perimeter ÷ 2)
2m * (m + n) == perimeter && return perimeter * n * (m - n) * (m^2 + n^2)
end
return 0
end
# # Naive
# function special_Pythagorean_triplet(perimeter::Int)::Int
# # Assume a < b < c
# for a ∈ 1:((perimeter - 3) ÷ 3)
# for b ∈ a:((perimeter - a) ÷ 2)
# c = perimeter - a - b
# a*a + b*b == c*c && return a * b * c
# end
# end
# return -1
# end
@time println(special_Pythagorean_triplet(1000))
In [11]:
@time println(sum(primes(2000000)))
In the 20×20 grid below, four numbers along a diagonal line have been marked in bold.
08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08 49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00 81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65 52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91 22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80 24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50 32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70 67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21 24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72 21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95 78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92 16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57 86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58 19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40 04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66 88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69 04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36 20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16 20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54 01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
The product of these numbers is $ 26 × 63 × 78 × 14 = 1788696 $.
What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20×20 grid?
The code below works, but does not show in the Jupyter Lab viewer. I am sure it has something to do with the leading zeros in the numbers. I do not know why they would matter, though. One can always go to the JSON view and read the code in cell[22]
.
In [12]:
numbers = Int[
08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
]
function largestproduct(numbers::Array{Int, 2}, moves::Int)::Int
# ToDo: Update everything to allow for custom indexing
# https://docs.julialang.org/en/v1/devdocs/offset-arrays/
# https://julialang.org/blog/2016/02/iteration/
# https://docs.julialang.org/en/v1/manual/arrays/
dim = size(numbers)
productmax::Int = 1
# Along dimension 1
for i ∈ 1:dim[1], j ∈ 1:(dim[2] - moves)
product::Int = 1
for k ∈ 0:(moves-1)
product *= numbers[i, j + k]
end
if product > productmax
productmax = product
end
end
# Along dimension 2
for j ∈ 1:dim[2], i ∈ 1:(dim[1] - moves)
product::Int = 1
for k ∈ 0:(moves-1)
product *= numbers[i + k, j]
end
if product > productmax
productmax = product
end
end
# Diagonal
for i ∈ 1:dim[1], j ∈ 1:dim[2]
product::Int = 1
for k ∈ 0:(moves-1)
if (i + k > dim[1]) || (j + k > dim[2])
break
end
product *= numbers[i + k, j + k]
end
if product > productmax
productmax = product
end
end
# Antidiagonal
for i ∈ 1:dim[1], j ∈ 1:dim[2]
product::Int = 1
for k ∈ 0:(moves-1)
if (i + k > dim[1]) || (j - k < 1)
break
end
product *= numbers[i + k, j - k]
end
if product > productmax
productmax = product
end
end
return productmax
end
@time println(largestproduct(numbers, 4))
The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be $ 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28 $.
The first ten terms would be $ 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, … $.
Let us list the factors of the first seven triangle numbers:
1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
We can see that $ 28 $ is the first triangle number to have over five divisors.
What is the value of the first triangle number to have over five hundred divisors?
In [13]:
# ToDo
# function first_triangular_number(factors::Int)::Int
# s::Int = 0
# for i ∈ Iterators.countfrom(1)
# s += i
# count_factors(s) > factors && return s
# end
# end
# first_triangular_number(500)
# @time println(numdivisors(prod(primes(23))))
# primes(23)
In [14]:
numbers = BigInt[
37107287533902102798797998220837590246510135740250,
46376937677490009712648124896970078050417018260538,
74324986199524741059474233309513058123726617309629,
91942213363574161572522430563301811072406154908250,
23067588207539346171171980310421047513778063246676,
89261670696623633820136378418383684178734361726757,
28112879812849979408065481931592621691275889832738,
44274228917432520321923589422876796487670272189318,
47451445736001306439091167216856844588711603153276,
70386486105843025439939619828917593665686757934951,
62176457141856560629502157223196586755079324193331,
64906352462741904929101432445813822663347944758178,
92575867718337217661963751590579239728245598838407,
58203565325359399008402633568948830189458628227828,
80181199384826282014278194139940567587151170094390,
35398664372827112653829987240784473053190104293586,
86515506006295864861532075273371959191420517255829,
71693888707715466499115593487603532921714970056938,
54370070576826684624621495650076471787294438377604,
53282654108756828443191190634694037855217779295145,
36123272525000296071075082563815656710885258350721,
45876576172410976447339110607218265236877223636045,
17423706905851860660448207621209813287860733969412,
81142660418086830619328460811191061556940512689692,
51934325451728388641918047049293215058642563049483,
62467221648435076201727918039944693004732956340691,
15732444386908125794514089057706229429197107928209,
55037687525678773091862540744969844508330393682126,
18336384825330154686196124348767681297534375946515,
80386287592878490201521685554828717201219257766954,
78182833757993103614740356856449095527097864797581,
16726320100436897842553539920931837441497806860984,
48403098129077791799088218795327364475675590848030,
87086987551392711854517078544161852424320693150332,
59959406895756536782107074926966537676326235447210,
69793950679652694742597709739166693763042633987085,
41052684708299085211399427365734116182760315001271,
65378607361501080857009149939512557028198746004375,
35829035317434717326932123578154982629742552737307,
94953759765105305946966067683156574377167401875275,
88902802571733229619176668713819931811048770190271,
25267680276078003013678680992525463401061632866526,
36270218540497705585629946580636237993140746255962,
24074486908231174977792365466257246923322810917141,
91430288197103288597806669760892938638285025333403,
34413065578016127815921815005561868836468420090470,
23053081172816430487623791969842487255036638784583,
11487696932154902810424020138335124462181441773470,
63783299490636259666498587618221225225512486764533,
67720186971698544312419572409913959008952310058822,
95548255300263520781532296796249481641953868218774,
76085327132285723110424803456124867697064507995236,
37774242535411291684276865538926205024910326572967,
23701913275725675285653248258265463092207058596522,
29798860272258331913126375147341994889534765745501,
18495701454879288984856827726077713721403798879715,
38298203783031473527721580348144513491373226651381,
34829543829199918180278916522431027392251122869539,
40957953066405232632538044100059654939159879593635,
29746152185502371307642255121183693803580388584903,
41698116222072977186158236678424689157993532961922,
62467957194401269043877107275048102390895523597457,
23189706772547915061505504953922979530901129967519,
86188088225875314529584099251203829009407770775672,
11306739708304724483816533873502340845647058077308,
82959174767140363198008187129011875491310547126581,
97623331044818386269515456334926366572897563400500,
42846280183517070527831839425882145521227251250327,
55121603546981200581762165212827652751691296897789,
32238195734329339946437501907836945765883352399886,
75506164965184775180738168837861091527357929701337,
62177842752192623401942399639168044983993173312731,
32924185707147349566916674687634660915035914677504,
99518671430235219628894890102423325116913619626622,
73267460800591547471830798392868535206946944540724,
76841822524674417161514036427982273348055556214818,
97142617910342598647204516893989422179826088076852,
87783646182799346313767754307809363333018982642090,
10848802521674670883215120185883543223812876952786,
71329612474782464538636993009049310363619763878039,
62184073572399794223406235393808339651327408011116,
66627891981488087797941876876144230030984490851411,
60661826293682836764744779239180335110989069790714,
85786944089552990653640447425576083659976645795096,
66024396409905389607120198219976047599490197230297,
64913982680032973156037120041377903785566085089252,
16730939319872750275468906903707539413042652315011,
94809377245048795150954100921645863754710598436791,
78639167021187492431995700641917969777599028300699,
15368713711936614952811305876380278410754449733078,
40789923115535562561142322423255033685442488917353,
44889911501440648020369068063960672322193204149535,
41503128880339536053299340368006977710650566631954,
81234880673210146739058568557934581403627822703280,
82616570773948327592232845941706525094512325230608,
22918802058777319719839450180888072429661980811197,
77158542502016545090413245809786882778948721859617,
72107838435069186155435662884062257473692284509516,
20849603980134001723930671666823555245252804609722,
53503534226472524250874054075591789781264330331690,
]
function large_sum(numbers::Vector{BigInt})::Int
s::BigInt = sum(numbers)
numdigits = length(digits(s))
strip = numdigits - 10
return s ÷ big(10)^strip
end
@time println(large_sum(numbers))
The following iterative sequence is defined for the set of positive integers:
$ n → n/2 $ ($ n $ is even)
$ n → 3n + 1 $ ($ n $ is odd)
Using the rule above and starting with $ 13 $, we generate the following sequence:
$ 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1 $.
It can be seen that this sequence (starting at $ 13 $ and finishing at $ 1 $) contains $ 10 $ terms. Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at $ 1 $.
Which starting number, under one million, produces the longest chain?
NOTE: Once the chain starts the terms are allowed to go above one million.
In [15]:
Collatz_transform(n::Int)::Int = iseven(n) ? n ÷ 2 : 3n + 1
Collatz_length(start::Int)::Int = start == 1 ? 1 : 1 + Collatz_length(Collatz_transform(start))
@time println(argmax(map(Collatz_length, 1:1_000_000)))
# This code may be optimized by memoization as a whole. I am sure a lot of paths are repeated.
In [16]:
function lattice_paths(size::Int)::Int
return binomial(2*size, size)
end
@time println(lattice_paths(20))
In [17]:
@time println(sum(digits(big(2)^1000)))
If the numbers $ 1 $ to $ 5 $ are written out in words: one, two, three, four, five, then there are $ 3 + 3 + 5 + 4 + 4 = 19 $ letters used in total.
If all the numbers from $ 1 $ to $ 1000 $ (one thousand) inclusive were written out in words, how many letters would be used?
NOTE: Do not count spaces or hyphens. For example, 342 (three hundred and forty-two) contains 23 letters and 115 (one hundred and fifteen) contains 20 letters. The use of "and" when writing out numbers is in compliance with British usage.
In [18]:
"""This uses short scales.
https://en.wikipedia.org/wiki/Long_and_short_scales"""
function decimaltotext(n::Int)::String
# We do not need momoization beyond 999 because things become regular.
store = Vector{String}(undef, 999)
store[1:19] = ["one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen", "sixteen", "seventeen", "eighteen", "nineteen"]
function decimaltotext_aux(n::Int, memo::Vector{String})::String
tens = ["ten", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"]
if isassigned(memo, n)
return memo[n]
end
# Put spaces between words to make this more legible.
if 20 ≤ n ≤ 99
if n % 10 == 0
return tens[n ÷ 10]
else
return string(tens[n ÷ 10], decimaltotext_aux(n % 10, memo))
end
elseif 100 ≤ n ≤ 999
if n % 100 == 0
return string(decimaltotext_aux(n ÷ 100, memo), "hundred")
else
return string(decimaltotext_aux(n ÷ 100, memo), "hundredand", decimaltotext_aux(n % 100, memo))
end
elseif 1_000 ≤ n ≤ 999_999
if n % 1_000 == 0
return string(decimaltotext_aux(n ÷ 1_000, memo), "thousand")
else
return string(decimaltotext_aux(n ÷ 1_000, memo), "thousandand", decimaltotext_aux(n % 1_000, memo))
end
elseif 1_000_000 ≤ n ≤ 999_999_999
if n % 1_000_000 == 0
return string(decimaltotext_aux(n ÷ 1_000_000, memo), "million")
else
return string(decimaltotext_aux(n ÷ 1_000_000, memo), "millionand", decimaltotext_aux(n % 1_000_000, memo))
end
elseif 1_000_000_000 ≤ n ≤ 999_999_999_999
if n % 1_000_000_000 == 0
return string(decimaltotext_aux(n ÷ 1_000_000_000, memo), "billion")
else
return string(decimaltotext_aux(n ÷ 1_000_000_000, memo), "billionand", decimaltotext_aux(n % 1_000_000_000, memo))
end
elseif 1_000_000_000_000 ≤ n
if n % 1_000_000_000_000 == 0
return string(decimaltotext_aux(n ÷ 1_000_000_000_000, memo), "trillion")
else
return string(decimaltotext_aux(n ÷ 1_000_000_000_000, memo), "trillionand", decimaltotext_aux(n % 1_000_000_000_000, memo))
end
end
end
return decimaltotext_aux(n, store)
end
@time println(sum(map(length ∘ decimaltotext, 1:1000)))
By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is $ 23 $.
3
7 4
2 4 6
8 5 9 3
That is, $ 3 + 7 + 4 + 9 = 23 $.
Find the maximum total from top to bottom of the triangle below:
75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
For a scaled up version, see Problem 67.
In [19]:
triangle =
"75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23"
function numberarray(input::String)::Array{Int, 2}
lines = map(split, split(input, "\n"))
lines = filter(x -> length(x) > 0, lines) # Remove empty lines
# Put all this in an T-array
n = length(lines)
Δ = zeros(Int, (n, n))
for i ∈ 1:n, j ∈ 1:i
Δ[i, j] = parse(Int, lines[i][j])
end
return Δ
end
function max_path_sum(triangle::Array{Int, 2})::Int
store = zeros(Int, size(triangle))
store[end, :] = triangle[end, :] # Base case
function max_path_sum_aux(triangle::Array{Int, 2}, memo::Array{Int, 2}, row::Int, col::Int)::Int
memo[row, col] > 0 && (return memo[row, col])
memo[row, col] = triangle[row, col] + max(max_path_sum_aux(triangle, memo, row + 1, col), max_path_sum_aux(triangle, memo, row + 1, col + 1))
return memo[row, col]
end
return max_path_sum_aux(triangle, store, 1, 1)
end
@time println(max_path_sum(numberarray(triangle)))
You are given the following information, but you may prefer to do some research for yourself.
How many Sundays fell on the first of the month during the twentieth century (1 Jan 1901 to 31 Dec 2000)?
In [1]:
function numSundays(startyear::Int, stopyear::Int)::Int
isleapyear(year::Int)::Bool = (year % 400 == 0 || (year % 4 == 0 && year % 100 ≠ 0))
monthdays = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
totaldays = 1
sundays = 0
startyear < 1900 && error("Start date must be on or after 1900.")
for year ∈ 1900:(startyear - 1)
totaldays += isleapyear(year) ? 366 : 365
end
for year ∈ startyear:stopyear
for month ∈ 1:12
if month == 2 && isleapyear(year)
totaldays += 29 # Leap year
else
totaldays += monthdays[month]
end
totaldays % 7 == 0 && (sundays += 1)
end
end
# The final day is stopyear-01-01, so we have to check for an extra Sunday.
totaldays % 7 == 0 && (sundays -= 1)
return sundays
end
@time println(numSundays(1901, 2000))
In [20]:
@time println(sum(digits(factorial(big(100)))))
Let $ d(n) $ be defined as the sum of proper divisors of $ n $ (numbers less than $ n $ which divide evenly into $ n $). If $ d(a) = b $ and $ d(b) = a $, where $ a ≠ b $, then $ a $ and $ b $ are an amicable pair and each of $ a $ and $ b $ are called amicable numbers.
For example, the proper divisors of $ 220 $ are $ 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110 $; therefore $ d(220) = 284 $. The proper divisors of $ 284 $ are $ 1, 2, 4, 71, 142 $; so $ d(284) = 220 $.
Evaluate the sum of all the amicable numbers under $ 10000 $.
In [21]:
function sumamicable(limit::Int)::Int
amicable = Int[]
for i ∈ 2:limit
j = sumdivisors(i) - i
k = sumdivisors(j) - j
if i ≠ j && i == k # Check for amicability
i ∉ amicable && append!(amicable, sort([i, j]))
end
end
return sum(amicable)
end
@time println(sumamicable(10000))
Using names.txt
(right click and 'Save Link/Target As...'), a 46K text file containing over five-thousand first names, begin by sorting it into alphabetical order. Then working out the alphabetical value for each name, multiply this value by its alphabetical position in the list to obtain a name score.
For example, when the list is sorted into alphabetical order, COLIN, which is worth $ 3 + 15 + 12 + 9 + 14 = 53 $, is the 938th name in the list. So, COLIN would obtain a score of $ 938 × 53 = 49714 $.
What is the total of all the name scores in the file?
In [22]:
alphabeticvalue(name::String)::Int = sum(char - 'A' + 1 for char in name)
function getwords(path::AbstractString)::Vector{String}
words = open(path) do file
read(file, String)
end
return map(string, split(words, r"\W", keepempty=false)) # SubString to String
end
function totalscore(words::Vector{String})::Int
sorted = sort(words)
total::Int = 0
for i ∈ 1:length(sorted)
total += alphabeticvalue(sorted[i]) * i
end
return total
end
@time println(totalscore(getwords("p022_names.txt")))
A perfect number is a number for which the sum of its proper divisors is exactly equal to the number. For example, the sum of the proper divisors of $ 28 $ would be $ 1 + 2 + 4 + 7 + 14 = 28 $, which means that $ 28 $ is a perfect number.
A number $ n $ is called deficient if the sum of its proper divisors is less than $ n $ and it is called abundant if this sum exceeds $ n $.
As $ 12 $ is the smallest abundant number, $ 1 + 2 + 3 + 4 + 6 = 16 $, the smallest number that can be written as the sum of two abundant numbers is $ 24 $. By mathematical analysis, it can be shown that all integers greater than $ 28123 $ can be written as the sum of two abundant numbers. However, this upper limit cannot be reduced any further by analysis even though it is known that the greatest number that cannot be expressed as the sum of two abundant numbers is less than this limit.
Find the sum of all the positive integers which cannot be written as the sum of two abundant numbers.
In [23]:
isabundant(n::Int)::Bool = (sumdivisors(n) - n) > n
function abundants(upperbound)::Vector{Bool}
lowerbound::Int = 12
isabundantarray::Vector{Bool} = falses(upperbound)
for i ∈ lowerbound:(upperbound - lowerbound)
isabundant(i) && (isabundantarray[i] = true)
end
return isabundantarray
end
function nonabundantdecomposible_sum(upperbound::Int = 28123)::Int
total::Int = 0
lowerbound::Int = 12
isabundantarray::Vector{Bool} = abundants(upperbound)
for n ∈ 1:upperbound
isdecomposible::Bool = false
for i ∈ lowerbound:(n - lowerbound)
if isabundantarray[i] && isabundantarray[n - i]
isdecomposible = true
break
end
end
if !isdecomposible
total += n
end
end
return total
end
@time println(nonabundantdecomposible_sum())
A permutation is an ordered arrangement of objects. For example, 3124 is one possible permutation of the digits 1, 2, 3 and 4. If all of the permutations are listed numerically or alphabetically, we call it lexicographic order. The lexicographic permutations of 0, 1 and 2 are:
012 021 102 120 201 210
What is the millionth lexicographic permutation of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9?
In [24]:
function permute(sortedcharacters::Vector{Char}, order::Int)::Vector{Char}
n = length(sortedcharacters)
thisorder::Int = 0
upperbound::Int = factorial(n - 1)
poschar::Int = 1
order == upperbound && return sortedcharacters # Base case
# Find the first character.
# E.g. If the permutation starts with 2, the order will be between 2⋅9! and 3⋅9!
while thisorder + upperbound < order
thisorder += upperbound
poschar += 1
end
unusedcharacters = [sortedcharacters[1:(poschar - 1)]; sortedcharacters[(poschar + 1):end]]
return [sortedcharacters[poschar]; permute(unusedcharacters, order - thisorder)]
end
@time println(String(permute(collect('0':'9'), 1_000_000)))
The Fibonacci sequence is defined by the recurrence relation $ F_n = F_{n−1} + F_{n−2} $, where $ F_1 = 1 $ and $ F_2 = 1 $.
Hence the first 12 terms will be: \begin{align} F_{1} & = 1 \\ F_{2} & = 1 \\ F_{3} & = 2 \\ F_{4} & = 3 \\ F_{5} & = 5 \\ F_{6} & = 8 \\ F_{7} & = 13 \\ F_{8} & = 21 \\ F_{9} & = 34 \\ F_{10} & = 55 \\ F_{11} & = 89 \\ F_{12} & = 144 \\ \end{align}
The 12th term, $ F_{12} $, is the first term to contain three digits.
What is the index of the first term in the Fibonacci sequence to contain 1000 digits?
In [30]:
## Slower
function fibonacciindex_Binet(numdigits::Int)::Int
index = 1
while 1 + log10(fibonacci_Binet(index)) < numdigits
index += 1
end
return index
end
function fibonacciindex_iter(numdigits::Int)::Int
# sum::Int = 0
a::BigInt = 1
b::BigInt = 1
index = 2
while 1 + log10(b) < numdigits
(a, b) = (b, a + b)
index += 1
end
return index
end
@time println(fibonacciindex_Binet(1000))
@time println(fibonacciindex_iter(1000))
A unit fraction contains $ 1 $ in the numerator. The decimal representation of the unit fractions with denominators $ 2 $ to $ 10 $ are given: \begin{align} \frac12 & = 0.5 \\ \frac13 & = 0.\overline{3} \\ \frac14 & = 0.25 \\ \frac15 & = 0.2 \\ \frac16 & = 0.1\overline{6} \\ \frac17 & = 0.\overline{142857} \\ \frac18 & = 0.125 \\ \frac19 & = 0.\overline{1} \\ \frac{1}{10} & = 0.1 \\ \end{align} Where $ 0.1\overline{6} $ means $ 0.166666... $, and has a 1-digit recurring cycle. It can be seen that $ \frac17 $ has a 6-digit recurring cycle.
Find the value of $ d < 1000 $ for which $ \frac1d $ contains the longest recurring cycle in its decimal fraction part.
The simplest approach is to use long division to find out when the remainder is repeats (or is 0).
The idea comes from the following sources
I need to show that the final answer is the largest full reptend prime. Some guidance may be received from the following sources.
This has to be thought about and formalized.
In [3]:
# Method 1. Use long division and check for repetition of the remainder.
function recurrencelength(d::Int, base::Int = 10)::Int
num = base
remainders = Int[1]
while true
num = remainders[end] * base
remainder = num % d
remainder == 0 && return 0 # no recurrence
pos = findall(x -> x == remainder, remainders)
length(pos) != 0 && (return length(remainders) - pos[1] + 1)
push!(remainders, remainder)
end
end
function maxrecurrencelength(limit::Int, base::Int = 10)::Int
sieve = primes(limit)
return sieve[argmax(map(recurrencelength, sieve))]
end
@time println(maxrecurrencelength(1000))
In [4]:
# Method 2: Find the largest full reptend prime.
# Use string instead of Integers to account for 0s.
# Also, permutations are more natural for strings than numbers.
function rotate(original::String)::Vector{String}
len = length(original)
rotations = Vector{String}(undef, len)
rotations[1] = original
for i ∈ 1:(len - 1)
rotations[i + 1] = join([rotations[i][2:end], rotations[i][1]])
end
return rotations
end
function fermatquotient(prime::T, base::T = 10)::Union{T, BigInt} where T <: Integer
return prime ≤ 19 ? (base^(prime - 1) - 1) ÷ prime : (big(base)^(prime - 1) - 1) ÷ prime
end
function isfullreptendprime(prime::T)::Bool where T <: Integer
fq = fermatquotient(prime)
rotations = rotate(string(fq, pad=(prime - 1))) # Add leading 0s.
return isempty(setdiff([string(fq * i, pad=(prime - 1)) for i ∈ 1:(prime - 1)], rotations))
end
function maxrecurringcycle(limit::Int)::Int
sieve = primes(limit)
for prime ∈ reverse(sieve)
isfullreptendprime(prime) && return prime
end
end
@time println(maxrecurringcycle(1000))
In [ ]:
Starting with the number $ 1 $ and moving to the right in a clockwise direction a 5 by 5 spiral is formed as follows:
21 22 23 24 25
20 7 8 9 10
19 6 1 2 11
18 5 4 3 12
17 16 15 14 13
It can be verified that the sum of the numbers on the diagonals is $ 101 $.
What is the sum of the numbers on the diagonals in a 1001 by 1001 spiral formed in the same way?
The matrix can be written as $$ \begin{matrix} 3^2 + 2 ⋅ 3 ⋅ 3 & & & & & & 3^2 + 2 ⋅ 3 ⋅ 4 \\ & 3^2 + 2 ⋅ 2 ⋅ 3 & & & & 3^2 + 2 ⋅ 2 ⋅ 4 & \\ & & 1^2 + 2 ⋅ 1 ⋅ 3 & & 1^2 + 2 ⋅ 1 ⋅ 4 & & \\ & & & 1 & & & \\ & & 1^2 + 2 ⋅ 1 ⋅ 2 & & 1^2 + 2 ⋅ 1 ⋅ 1 & & \\ & 3^2 + 2 ⋅ 2 ⋅ 2 & & & & 3^2 + 2 ⋅ 2 ⋅ 1 & \\ 3^2 + 2 ⋅ 3 ⋅ 2 & & & & & & 3^2 + 2 ⋅ 3 ⋅ 1 \end{matrix} $$
Let the dimension of the matrix be $ n \times n $, where $ n $ is necessarily odd. Let $ m = \frac{n - 1}{2} $. Then, going from inside to outside, the required sum is $$ 1 + \sum_{i = 1}^m \left[ 4(-1 + 2i)^2 + 2 i (1 + 2 + 3 + 4) \right] = 1 + 4m + 2m(m+1) + \frac83 m(m+1)(2m+1) . $$
In [25]:
function number_spiral_diagonals(n::Int) # n must be odd
m::Int = (n - 1) ÷ 2
return 1 + 4 * m + 2 * m * (m+1) + 8 * m * (m+1) * (2m+1) ÷ 3
end
@time println(number_spiral_diagonals(1001))
The fraction $ \frac{49}{98} $ is a curious fraction, as an inexperienced mathematician in attempting to simplify it may incorrectly believe that $ \frac{49}{98} = \frac{4}{8} $, which is correct, is obtained by cancelling the 9s.
We shall consider fractions like, $ \frac{30}{50} = \frac{3}{5} $, to be trivial examples.
There are exactly four non-trivial examples of this type of fraction, less than one in value, and containing two digits in the numerator and denominator.
If the product of these four fractions is given in its lowest common terms, find the value of the denominator.
In [3]:
function iscancelling(p::Int, q::Int)::Bool
digitsp = digits(p)
digitsq = digits(q)
# Special cases
length(Set(digitsp)) + length(Set(digitsq)) == length(Set([digitsp; digitsq])) && return false # Trivially false: no common elements
isempty(setdiff(digitsp, digitsq)) && return false # Trivially false, e.g. 12 and 21.
p % 10 == q % 10 == 0 && return false # Trivially true, so ignore.
posq = 1
while posq ≤ length(digitsq)
posp = findfirst([digitp == digitsq[posq] for digitp in digitsp])
if !isnothing(posp) # Remove the relevant elements
digitsp = [digitsp[1:(posp - 1)]; digitsp[posp + 1:end]]
digitsq = [digitsq[1:(posq - 1)]; digitsq[posq + 1:end]]
end
posq += 1
end
return parse(Int, join(string(d) for d in reverse(digitsp))) // parse(Int, join(string(d) for d in reverse(digitsq))) == p // q
end
function cancellingdenominator(numdigits::Int)::Int
product = 1 // 1
for p ∈ 10^(numdigits - 1):(10^numdigits - 1), q ∈ (p + 1):(10^numdigits - 1)
iscancelling(p, q) && (product *= p//q)
end
return denominator(product)
end
@time println(cancellingdenominator(2))
In [26]:
function sumdigitfactorial()::Int
# Note that 9! + 9! = 2 ⋅ 9! > 99. At which point does this inequality reverse?
# This can be further optimized. See
# https://www.xarg.org/puzzle/project-euler/problem-34/
function maxdigits()
ninefactorial = factorial(9)
i = 1
num = 9
while num < i * ninefactorial
i += 1
num = 10 * num + 9
end
return i
end
total = 0
limit = 10^(maxdigits() + 1)
for i ∈ 10:limit
if sum(factorial(d) for d in digits(i)) == i
total += i
end
end
return total
end
@time println(sumdigitfactorial())
The number $ 197 $, is called a circular prime because all rotations of the digits: 197, 971, and 719, are themselves prime.
There are thirteen such primes below $ 100 $: $ 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97 $.
How many circular primes are there below one million?
In [62]:
# ToDo
# This code is also suboptimal. It checks the primality of all of the rotations.
# For example, it will check if 197 is prime while checking for the prime circularity of each of 197, 971, and 719.
function rotate(n::Int)::Vector{Int}
numdigits = length(digits(n))
rotations = Vector{Int}(undef, numdigits)
rotations[1] = n
for i ∈ 1:(numdigits - 1)
rotated = (rotations[i] % 10) * 10^(numdigits-1) + (rotations[i] ÷ 10)
rotations[i + 1] = rotated
end
return rotations
end
function count_circular_primes(limit::Int)::Int
count::Int = 0
count1::Int = 0
sieve = primes(limit)
for p ∈ sieve
rotations = rotate(p)
# all(r ∈ sieve for r ∈ rotations)) && (count += 1) # suboptimal: sieve is sorted.
all(!isempty(searchsorted(sieve, r)) for r ∈ rotations) && (count += 1)
end
return count
end
@time println(count_circular_primes(1_000_000))
Clearly, for a $ n $-digit pandigital prime, it must be less than $ 987654321$. But the code does not run in finite time. ToDo.
In [28]:
# ToDo
function ispandigital(n::Int)::Bool
decimal = digits(n)
for i ∈ 1:length(decimal)
length(filter(x -> x == i, decimal)) ≠ 1 && return false
end
for i ∈ union([0], (length(decimal)+1):9)
length(filter(x -> x == i, decimal)) ≠ 0 && return false
end
return true
end
function largest_pandigital_prime()::Int
sieve = primes(987654321)
for prime ∈ Iterators.reverse(sieve)
ispandigital(prime) && return prime
end
end
# @time println(largest_pandigital_prime())
Out[28]:
The prime $ 41 $, can be written as the sum of six consecutive primes, $ 41 = 2 + 3 + 5 + 7 + 11 + 13 $. This is the longest sum of consecutive primes that adds to a prime below one-hundred.
The longest sum of consecutive primes below one-thousand that adds to a prime, contains $ 21 $ terms, and is equal to $ 953 $.
Which prime, below one-million, can be written as the sum of the most consecutive primes?
In [37]:
function consecutiveprimesum(limit::Int)::Int
sieve = primes(limit)
nummax = 0
Σ0 = 0
for i ∈ 1:length(sieve)
j = length(sieve)
Σ = sum(sieve[i:end])
while Σ >= limit || Σ ∉ sieve # Decrease until Σ < limit or is not prime
Σ -= sieve[j]
j -= 1
end
num = j - i + 1 # Number of consecutive primes
if num > nummax
nummax = num
Σ0 = Σ
end
end
return Σ0
end
@time println(consecutiveprimesum(1_000_000))
By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.
3
7 4
2 4 6
8 5 9 3
That is, $ 3 + 7 + 4 + 9 = 23 $.
Find the maximum total from top to bottom in p067_triangle.txt
(right click and 'Save Link/Target As...'), a 15K text file containing a triangle with one-hundred rows.
Comment: For the code, see Problem 18.
In [29]:
triangle = open("p067_triangle.txt") do file
read(file, String)
end
@time println(max_path_sum(numberarray(triangle)))
In [35]:
sum(primes(10))
Out[35]:
In [ ]: