Library of useful functions


In [2]:
# Primes
using Primes

# ToDo: Generalize this so that it can take pregenerated sieves as input.
function primes(limit::Int)::Vector{Int}
	sieve = Int[2]

	for odd  3:2:limit    # Consider only odd numbers
		isprime = true
		for prime  sieve
			prime * prime > odd && break    # No need to check beyond this
			odd % prime == 0 && (isprime = false)
		end
		isprime && push!(sieve, odd)
	end

	return sieve
end

isprime(n::Int) = (primes(n)[end] == n)

function nthprime(n::Int)::Int
	upperbound = Int(floor(n * (log(n) + log(log(n)))))
	return primes(upperbound)[n]
end


# Fibonacci
# ToDo: Generalize this to return Int or Int128 if in range.
# Thought: The Binet's formula computation can be optimized by storing ϕ^n and using it to compute ϕ^(n+1).
function fibonacci_Binet(index::Int)::BigInt
	# Uses Binet's formula
	sqrt5 = 5
	ϕ = big(1 + sqrt5) / 2
	ψ = big(1 - sqrt5) / 2
	return round(BigInt, (ϕ^index - ψ^index) / sqrt5)
end


# Factorization
function primefactorize(n::Int)
	sieve = primes(n)    # Have to figure out a way to not generate so many primes

	factors = Int[]
	powers = Int[]

	for prime  sieve
		prime > n && break
		pow = 0
		while n % prime == 0
			n ÷= prime
			pow += 1
		end
		if pow > 0
			push!(factors, prime)
			push!(powers, pow)
		end
	end

	return collect(zip(factors, powers))
end

function numdivisors(n::Int)::Int
	n == 1 && return 1
	factorization = primefactorize(n)
	count = 1
	return prod(map(x -> x[2] + 1, factorization))
end

function sumdivisors(n::Int)::Int
	n == 1 && (return 1)
	# https://www.xarg.org/2016/06/calculate-the-sum-of-divisors/
	factored = primefactorize(n)
	return prod((factor[1]^(factor[2] + 1) - 1) ÷ (factor[1] - 1) for factor in factored)
end

# sumdivisors(n::Int)::Int  =  sum(i for i ∈ 1:n if n % i == 0)    # Slow


# The following are implemented in Julia.Base
# # The ith position gives the coefficient of the (i-1)th power of the base.
# function digits(n::Int, base::Int)::Vector{Int}
# 	d = Int[]
# 	while n > 0
# 		push!(d, n % base)
# 		n ÷= base
# 	end
# 	return d
# end

# # Combinatorics
# function binomial(n::Int, k::Int)::Int
# 	product = 1
# 	for i ∈ 0:(k - 1)
# 		product *= (n - i) / (k - i)
# 	end
# 	return Int(product)
# end

# count_digits(n::Int, base::Int) = length(digits(n, base))


Out[2]:
sumdivisors (generic function with 1 method)

Problem 001: Multiples of 3 and 5

If we list all the natural numbers below $ 10 $ that are multiples of $ 3 $ or $ 5 $, we get $ 3 $, $ 5 $, $ 6 $ and $ 9 $. The sum of these multiples is $ 23 $.

Find the sum of all the multiples of $ 3 $ or $ 5 $ below $ 1000 $.


In [21]:
function multiples(limit::Int)::Int
	sum::Int = 0
	for i  3:limit
		if i%3 == 0 || i%5 == 0
			sum += i
		end
	end
	return sum
end
@time println(multiples(999))


233168
  0.000165 seconds (26 allocations: 624 bytes)

Problem 002: Even Fibonacci numbers

Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with $ 1 $ and $ 2 $, the first 10 terms will be $ 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, … $.

By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.

Comments

It would seem that a closed form formula would be much faster to evaluate than iterate through all the possibilities. Yet, the iterative solution is much faster!

TODO: A time-complexity analysis.


In [28]:
# Slower
function fibonaccieven_Binet(limit::Int)::Int
	Σ = 0
	i = 0
	while true
		i += 3
		f_i = fibonacci_Binet(i)
		f_i  limit  &&  break
		Σ += f_i
	end
	return Σ
end

function fibonaccieven_iter(limit::Int)::Int
	Σ::Int = 10
	a::Int = 2
	b::Int = 8
	while true
		new = 4b + a
		new  limit  &&  break
		(a, b) = (b, new)
		Σ += b
	end
	return Σ
end

@time println(fibonaccieven_Binet(4_000_000))
@time println(fibonaccieven_iter(4_000_000))


4613732
  0.000384 seconds (323 allocations: 13.656 KiB)
4613732
  0.008317 seconds (169 allocations: 9.844 KiB)

Problem 003: Largest prime factor

The prime factors of $ 13195 $ are $ 5, 7, 13, 29 $.

What is the largest prime factor of the number $ 600851475143 $?


In [4]:
# The idea is to keep dividing by the small divisors so that we are left with the largest prime number.
function maxprimefactor(n::Int)::Int
	# Special case: 2^k is a factor
	while n  2 && n % 2 == 0
		n ÷= 2
	end

	# Odd prime factors p^k
	i::Int = 3
	while i * i  n
		if isprime(i) && n % i == 0
			n ÷= i
		else
			i += 2
		end
	end

	return n
end

@time println(maxprimefactor(600851475143))


6857

Problem 004: Largest palindrome product

A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is $ 9009 = 91 × 99 $.

Find the largest palindrome made from the product of two 3-digit numbers.

Note that $ 999 ⋅ 998 = 998 ⋅ 999 $, so we only need to check the upper diagonal matrix.


In [5]:
function reverse(n::Int)::Int
	decimal = digits(n)
	rev::Int = 0
	for d  decimal
		rev = 10 * rev + d
	end
	return rev
end

ispalindrome(n::Int)::Bool  =  (n == reverse(n))

function maxpalindromeproduct(max_decimal_digits::Int)::Int
	max::Int = 10^max_decimal_digits - 1
	palindromes = Int[]

	for i  Iterators.reverse(1:max), j  Iterators.reverse(i:max)
		n::Int = i * j

		# The i*max cannot go below the any of the palindromes found.
		length(palindromes) > 0 && i * max  palindromes[1] && break

		ispalindrome(n) && push!(palindromes, n)
	end
	return maximum(palindromes)
end

@time println(maxpalindromeproduct(3))


906609

Problem 005: Smallest multiple

$ 2520 $ is the smallest number that can be divided by each of the numbers from $ 1 $ to $ 10 $ without any remainder.

What is the smallest positive number that is evenly divisible by all of the numbers from $ 1 $ to $ 20 $?


In [6]:
@time println(2^4 * 3^2 * 5 * 7 * 11 * 13 * 17 * 19)


232792560

Problem 006: Sum square difference

The sum of the squares of the first ten natural numbers is $ 1^2 + 2^2 + ⋯ + 10^2 = 385 $.

The square of the sum of the first ten natural numbers is $ (1 + 2 + ⋯ + 10)^2 = 55^2 = 3025 $.

Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is $ 3025 - 385 = 2640 $.

Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.

$$ Δ = \left( \frac{n (n+1)}{2} \right)^2 - \frac{n (n + 1) (2n + 1)}{6} = \frac{1}{12} (n (n + 1) (3 n^2 - n - 2)) $$

In [7]:
@time println(100 * (100 + 1) * (3 * 100^2 - 100 - 2) ÷ 12)


25164150

Problem 007: 10001st prime

By listing the first six prime numbers: $ 2, 3, 5, 7, 11, 13 $, we can see that the 6th prime is $ 13 $.

What is the 10001st prime number?

The trick is to use upper bound for the nth prime as given here.


In [6]:
@time println(nthprime(10001))


104743
  0.029378 seconds (40 allocations: 257.266 KiB)

Problem 008: Largest product in a series

The four adjacent digits in the 1000-digit number that have the greatest product are $ 9 × 9 × 8 × 9 = 5832 $.

73167176531330624919225119674426574742355349194934
96983520312774506326239578318016984801869478851843
85861560789112949495459501737958331952853208805511
12540698747158523863050715693290963295227443043557
66896648950445244523161731856403098711121722383113
62229893423380308135336276614282806444486645238749
30358907296290491560440772390713810515859307960866
70172427121883998797908792274921901699720888093776
65727333001053367881220235421809751254540594752243
52584907711670556013604839586446706324415722155397
53697817977846174064955149290862569321978468622482
83972241375657056057490261407972968652414535100474
82166370484403199890008895243450658541227588666881
16427171479924442928230863465674813919123162824586
17866458359124566529476545682848912883142607690042
24219022671055626321111109370544217506941658960408
07198403850962455444362981230987879927244284909188
84580156166097919133875499200524063689912560717606
05886116467109405077541002256983155200055935729725
71636269561882670428252483600823257530420752963450

Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product?


In [9]:
n = 7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450

function largest_product(n::BigInt, adjacentdigits::Int)::Int
	decimal = digits(n)
	productmax::Int = 1

	for i  1:(length(decimal) - adjacentdigits + 1)
		product::Int = 1
		for k  0:(adjacentdigits - 1)
			product *= decimal[i + k]
		end
		product > productmax && (productmax = product)
	end

	return productmax
end

@time println(largest_product(n, 13))


23514624000

Problem 009: Special Pythagorean triplet

A Pythagorean triplet is a set of three natural numbers, $ a < b < c $, for which, $ a^2 + b^2 = c^2 $. For example, $ 3^2 + 4^2 = 9 + 16 = 25 = 5^2 $.

There exists exactly one Pythagorean triplet for which $ a + b + c = 1000 $. Find the product abc.

Solution

Let $ p $ be the given perimeter of the triangle. We parameterize the sides as $ a = m^2 - n^2, b = 2mn, c = m^2 + n^2 $, where $ m > n > 0 $. Using the fact that $ a + b + c = p $, we get $ 2 m (m + n) = p $.

Now we need good bounds for $ m, n $ in order to reduce the search space. Note that for $ n $ to be maximum, we must have $ m = n + 1 $, so we get the estimate $ n ≤ \frac{\sqrt{p}}{2} $. On the other hand, for $ m $ to maximum, we require $ n = 1 $, so we get the estimate $ m ≤ \sqrt{\frac{p}{2}} $.

Finally, the required product after simplification is $ p n (m - n) (m^2 + n^2) $.

References:

  1. The Overview PDF.
  2. Pier's forum post on Thu, 19 Aug 2004, 09:04.

In [10]:
# Using a parameterization of Pythagorean triplets
function special_Pythagorean_triplet(perimeter::Int)::Int
	for n  1:(isqrt(perimeter) ÷ 2), m  n:isqrt(perimeter ÷ 2)
		2m * (m + n) == perimeter  &&  return perimeter * n * (m - n) * (m^2 + n^2)
	end
	return 0
end

# # Naive
# function special_Pythagorean_triplet(perimeter::Int)::Int
# 	# Assume a < b < c
# 	for a ∈ 1:((perimeter - 3) ÷ 3)
# 		for b ∈ a:((perimeter - a) ÷ 2)
# 			c = perimeter - a - b
# 			a*a + b*b == c*c  &&  return a * b * c
# 		end
# 	end
# 	return -1
# end

@time println(special_Pythagorean_triplet(1000))


31875000

Problem 010: Summation of primes

The sum of the primes below $ 10 $ is $ 2 + 3 + 5 + 7 = 17 $.

Find the sum of all the primes below two million.


In [11]:
@time println(sum(primes(2000000)))


142913828922

Problem 011: Largest product in a grid

In the 20×20 grid below, four numbers along a diagonal line have been marked in bold.

08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48

The product of these numbers is $ 26 × 63 × 78 × 14 = 1788696 $.

What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20×20 grid?

The code below works, but does not show in the Jupyter Lab viewer. I am sure it has something to do with the leading zeros in the numbers. I do not know why they would matter, though. One can always go to the JSON view and read the code in cell[22].


In [12]:
numbers = Int[
	08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
	49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
	81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
	52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
	22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
	24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
	32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
	67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
	24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
	21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
	78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
	16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
	86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
	19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
	04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
	88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
	04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
	20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
	20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
	01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
]

function largestproduct(numbers::Array{Int, 2}, moves::Int)::Int
	# ToDo: Update everything to allow for custom indexing
	# https://docs.julialang.org/en/v1/devdocs/offset-arrays/
	# https://julialang.org/blog/2016/02/iteration/
	# https://docs.julialang.org/en/v1/manual/arrays/

	dim = size(numbers)
	productmax::Int = 1

	# Along dimension 1
	for i  1:dim[1], j  1:(dim[2] - moves)
		product::Int = 1
		for k  0:(moves-1)
			product *= numbers[i, j + k]
		end
		if product > productmax
			productmax = product
		end
	end

	# Along dimension 2
	for j  1:dim[2], i  1:(dim[1] - moves)
		product::Int = 1
		for k  0:(moves-1)
			product *= numbers[i + k, j]
		end
		if product > productmax
			productmax = product
		end
	end

	# Diagonal
	for i  1:dim[1], j  1:dim[2]
		product::Int = 1
		for k  0:(moves-1)
			if (i + k > dim[1]) || (j + k > dim[2])
				break
			end
			product *= numbers[i + k, j + k]
		end
		if product > productmax
			productmax = product
		end
	end

	# Antidiagonal
	for i  1:dim[1], j  1:dim[2]
		product::Int = 1
		for k  0:(moves-1)
			if (i + k > dim[1]) || (j - k < 1)
				break
			end
			product *= numbers[i + k, j - k]
		end
		if product > productmax
			productmax = product
		end
	end

	return productmax
end

@time println(largestproduct(numbers, 4))


70600674

Problem 012: Highly divisible triangular number

The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be $ 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28 $.

The first ten terms would be $ 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, … $.

Let us list the factors of the first seven triangle numbers:

 1: 1
 3: 1,3
 6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28

We can see that $ 28 $ is the first triangle number to have over five divisors.

What is the value of the first triangle number to have over five hundred divisors?


In [13]:
# ToDo

# function first_triangular_number(factors::Int)::Int
# 	s::Int = 0
# 	for i ∈ Iterators.countfrom(1)
# 		s += i
# 		count_factors(s) > factors && return s
# 	end
# end

# first_triangular_number(500)
# @time println(numdivisors(prod(primes(23))))
# primes(23)

Problem 013: Large sum

Work out the first ten digits of the sum of the following one-hundred 50-digit numbers.


In [14]:
numbers = BigInt[
	37107287533902102798797998220837590246510135740250,
	46376937677490009712648124896970078050417018260538,
	74324986199524741059474233309513058123726617309629,
	91942213363574161572522430563301811072406154908250,
	23067588207539346171171980310421047513778063246676,
	89261670696623633820136378418383684178734361726757,
	28112879812849979408065481931592621691275889832738,
	44274228917432520321923589422876796487670272189318,
	47451445736001306439091167216856844588711603153276,
	70386486105843025439939619828917593665686757934951,
	62176457141856560629502157223196586755079324193331,
	64906352462741904929101432445813822663347944758178,
	92575867718337217661963751590579239728245598838407,
	58203565325359399008402633568948830189458628227828,
	80181199384826282014278194139940567587151170094390,
	35398664372827112653829987240784473053190104293586,
	86515506006295864861532075273371959191420517255829,
	71693888707715466499115593487603532921714970056938,
	54370070576826684624621495650076471787294438377604,
	53282654108756828443191190634694037855217779295145,
	36123272525000296071075082563815656710885258350721,
	45876576172410976447339110607218265236877223636045,
	17423706905851860660448207621209813287860733969412,
	81142660418086830619328460811191061556940512689692,
	51934325451728388641918047049293215058642563049483,
	62467221648435076201727918039944693004732956340691,
	15732444386908125794514089057706229429197107928209,
	55037687525678773091862540744969844508330393682126,
	18336384825330154686196124348767681297534375946515,
	80386287592878490201521685554828717201219257766954,
	78182833757993103614740356856449095527097864797581,
	16726320100436897842553539920931837441497806860984,
	48403098129077791799088218795327364475675590848030,
	87086987551392711854517078544161852424320693150332,
	59959406895756536782107074926966537676326235447210,
	69793950679652694742597709739166693763042633987085,
	41052684708299085211399427365734116182760315001271,
	65378607361501080857009149939512557028198746004375,
	35829035317434717326932123578154982629742552737307,
	94953759765105305946966067683156574377167401875275,
	88902802571733229619176668713819931811048770190271,
	25267680276078003013678680992525463401061632866526,
	36270218540497705585629946580636237993140746255962,
	24074486908231174977792365466257246923322810917141,
	91430288197103288597806669760892938638285025333403,
	34413065578016127815921815005561868836468420090470,
	23053081172816430487623791969842487255036638784583,
	11487696932154902810424020138335124462181441773470,
	63783299490636259666498587618221225225512486764533,
	67720186971698544312419572409913959008952310058822,
	95548255300263520781532296796249481641953868218774,
	76085327132285723110424803456124867697064507995236,
	37774242535411291684276865538926205024910326572967,
	23701913275725675285653248258265463092207058596522,
	29798860272258331913126375147341994889534765745501,
	18495701454879288984856827726077713721403798879715,
	38298203783031473527721580348144513491373226651381,
	34829543829199918180278916522431027392251122869539,
	40957953066405232632538044100059654939159879593635,
	29746152185502371307642255121183693803580388584903,
	41698116222072977186158236678424689157993532961922,
	62467957194401269043877107275048102390895523597457,
	23189706772547915061505504953922979530901129967519,
	86188088225875314529584099251203829009407770775672,
	11306739708304724483816533873502340845647058077308,
	82959174767140363198008187129011875491310547126581,
	97623331044818386269515456334926366572897563400500,
	42846280183517070527831839425882145521227251250327,
	55121603546981200581762165212827652751691296897789,
	32238195734329339946437501907836945765883352399886,
	75506164965184775180738168837861091527357929701337,
	62177842752192623401942399639168044983993173312731,
	32924185707147349566916674687634660915035914677504,
	99518671430235219628894890102423325116913619626622,
	73267460800591547471830798392868535206946944540724,
	76841822524674417161514036427982273348055556214818,
	97142617910342598647204516893989422179826088076852,
	87783646182799346313767754307809363333018982642090,
	10848802521674670883215120185883543223812876952786,
	71329612474782464538636993009049310363619763878039,
	62184073572399794223406235393808339651327408011116,
	66627891981488087797941876876144230030984490851411,
	60661826293682836764744779239180335110989069790714,
	85786944089552990653640447425576083659976645795096,
	66024396409905389607120198219976047599490197230297,
	64913982680032973156037120041377903785566085089252,
	16730939319872750275468906903707539413042652315011,
	94809377245048795150954100921645863754710598436791,
	78639167021187492431995700641917969777599028300699,
	15368713711936614952811305876380278410754449733078,
	40789923115535562561142322423255033685442488917353,
	44889911501440648020369068063960672322193204149535,
	41503128880339536053299340368006977710650566631954,
	81234880673210146739058568557934581403627822703280,
	82616570773948327592232845941706525094512325230608,
	22918802058777319719839450180888072429661980811197,
	77158542502016545090413245809786882778948721859617,
	72107838435069186155435662884062257473692284509516,
	20849603980134001723930671666823555245252804609722,
	53503534226472524250874054075591789781264330331690,
]

function large_sum(numbers::Vector{BigInt})::Int
	s::BigInt = sum(numbers)
	numdigits = length(digits(s))
	strip = numdigits - 10
	return s ÷ big(10)^strip
end

@time println(large_sum(numbers))


5537376230

Problem 014: Longest Collatz sequence

The following iterative sequence is defined for the set of positive integers:

$ n → n/2 $ ($ n $ is even)

$ n → 3n + 1 $ ($ n $ is odd)

Using the rule above and starting with $ 13 $, we generate the following sequence:

$ 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1 $.

It can be seen that this sequence (starting at $ 13 $ and finishing at $ 1 $) contains $ 10 $ terms. Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at $ 1 $.

Which starting number, under one million, produces the longest chain?

NOTE: Once the chain starts the terms are allowed to go above one million.


In [15]:
Collatz_transform(n::Int)::Int  =  iseven(n) ? n ÷ 2 : 3n + 1

Collatz_length(start::Int)::Int  =  start == 1 ? 1 : 1 + Collatz_length(Collatz_transform(start))

@time println(argmax(map(Collatz_length, 1:1_000_000)))

# This code may be optimized by memoization as a whole. I am sure a lot of paths are repeated.


837799

Problem 015: Lattice paths

Starting in the top left corner of a 2×2 grid, and only being able to move to the right and down, there are exactly 6 routes to the bottom right corner.

How many such routes are there through a 20×20 grid?


In [16]:
function lattice_paths(size::Int)::Int
	return binomial(2*size, size)
end

@time println(lattice_paths(20))


137846528820

Problem 016: Power digit sum

$ 2^{15} = 32768 $ and the sum of its digits is $ 3 + 2 + 7 + 6 + 8 = 26 $.

What is the sum of the digits of the number $ 2^{1000} $?


In [17]:
@time println(sum(digits(big(2)^1000)))


1366

Problem 017: Number letter counts

If the numbers $ 1 $ to $ 5 $ are written out in words: one, two, three, four, five, then there are $ 3 + 3 + 5 + 4 + 4 = 19 $ letters used in total.

If all the numbers from $ 1 $ to $ 1000 $ (one thousand) inclusive were written out in words, how many letters would be used?

NOTE: Do not count spaces or hyphens. For example, 342 (three hundred and forty-two) contains 23 letters and 115 (one hundred and fifteen) contains 20 letters. The use of "and" when writing out numbers is in compliance with British usage.


In [18]:
"""This uses short scales.
https://en.wikipedia.org/wiki/Long_and_short_scales"""
function decimaltotext(n::Int)::String
	# We do not need momoization beyond 999 because things become regular.
	store = Vector{String}(undef, 999)
	store[1:19] = ["one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen", "sixteen", "seventeen", "eighteen", "nineteen"]

	function decimaltotext_aux(n::Int, memo::Vector{String})::String
		tens = ["ten", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"]

		if isassigned(memo, n)
			return memo[n]
		end

		# Put spaces between words to make this more legible.
		if 20  n  99
			if n % 10 == 0
				return tens[n ÷ 10]
			else
				return string(tens[n ÷ 10], decimaltotext_aux(n % 10, memo))
			end
		elseif 100  n  999
			if n % 100 == 0
				return string(decimaltotext_aux(n ÷ 100, memo), "hundred")
			else
				return string(decimaltotext_aux(n ÷ 100, memo), "hundredand", decimaltotext_aux(n % 100, memo))
			end
		elseif 1_000  n  999_999
			if n % 1_000 == 0
				return string(decimaltotext_aux(n ÷ 1_000, memo), "thousand")
			else
				return string(decimaltotext_aux(n ÷ 1_000, memo), "thousandand", decimaltotext_aux(n % 1_000, memo))
			end
		elseif 1_000_000  n  999_999_999
			if n % 1_000_000 == 0
				return string(decimaltotext_aux(n ÷ 1_000_000, memo), "million")
			else
				return string(decimaltotext_aux(n ÷ 1_000_000, memo), "millionand", decimaltotext_aux(n % 1_000_000, memo))
			end
		elseif 1_000_000_000  n  999_999_999_999
			if n % 1_000_000_000 == 0
				return string(decimaltotext_aux(n ÷ 1_000_000_000, memo), "billion")
			else
				return string(decimaltotext_aux(n ÷ 1_000_000_000, memo), "billionand", decimaltotext_aux(n % 1_000_000_000, memo))
			end
		elseif 1_000_000_000_000  n
			if n % 1_000_000_000_000 == 0
				return string(decimaltotext_aux(n ÷ 1_000_000_000_000, memo), "trillion")
			else
				return string(decimaltotext_aux(n ÷ 1_000_000_000_000, memo), "trillionand", decimaltotext_aux(n % 1_000_000_000_000, memo))
			end
		end
	end

	return decimaltotext_aux(n, store)
end

@time println(sum(map(length  decimaltotext, 1:1000)))


21124

Problem 018: Maximum path sum I

By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is $ 23 $.

3
7 4
2 4 6
8 5 9 3

That is, $ 3 + 7 + 4 + 9 = 23 $.

Find the maximum total from top to bottom of the triangle below:

75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23

For a scaled up version, see Problem 67.


In [19]:
triangle =
"75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23"

function numberarray(input::String)::Array{Int, 2}
	lines = map(split, split(input, "\n"))
	lines = filter(x -> length(x) > 0, lines)    #	Remove empty lines
	# Put all this in an T-array
	n = length(lines)
	Δ = zeros(Int, (n, n))
	for i  1:n, j  1:i
		Δ[i, j] = parse(Int, lines[i][j])
	end
	return Δ
end

function max_path_sum(triangle::Array{Int, 2})::Int
	store = zeros(Int, size(triangle))
	store[end, :] = triangle[end, :]    # Base case

	function max_path_sum_aux(triangle::Array{Int, 2}, memo::Array{Int, 2}, row::Int, col::Int)::Int
		memo[row, col] > 0 && (return memo[row, col])
		memo[row, col] = triangle[row, col] + max(max_path_sum_aux(triangle, memo, row + 1, col), max_path_sum_aux(triangle, memo, row + 1, col + 1))
		return memo[row, col]
	end
	return max_path_sum_aux(triangle, store, 1, 1)
end

@time println(max_path_sum(numberarray(triangle)))


1074

Problem 19: Counting Sundays

You are given the following information, but you may prefer to do some research for yourself.

  • 1 Jan 1900 was a Monday.
  • Thirty days has September,
    April, June and November.
    All the rest have thirty-one,
    Saving February alone,
    Which has twenty-eight, rain or shine.
    And on leap years, twenty-nine.
  • A leap year occurs on any year evenly divisible by 4, but not on a century unless it is divisible by 400.

How many Sundays fell on the first of the month during the twentieth century (1 Jan 1901 to 31 Dec 2000)?


In [1]:
function numSundays(startyear::Int, stopyear::Int)::Int
	isleapyear(year::Int)::Bool = (year % 400 == 0 || (year % 4 == 0 && year % 100  0))

	monthdays = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
	totaldays = 1
	sundays = 0

	startyear < 1900  &&  error("Start date must be on or after 1900.")

	for year  1900:(startyear - 1)
		totaldays += isleapyear(year) ? 366 : 365
	end

	for year  startyear:stopyear
		for month  1:12
			if month == 2 && isleapyear(year)
				totaldays += 29    # Leap year
			else
				totaldays += monthdays[month]
			end
			totaldays % 7 == 0  &&  (sundays += 1)
		end
	end

	# The final day is stopyear-01-01, so we have to check for an extra Sunday.
	totaldays % 7 == 0  &&  (sundays -= 1)
	return sundays
end

@time println(numSundays(1901, 2000))


171
  0.047418 seconds (32.57 k allocations: 1.774 MiB)

Problem 020: Factorial digit sum

$ n! $ means $ n × (n − 1) × ... × 3 × 2 × 1 $.

For example, $ 10! = 10 × 9 × ... × 3 × 2 × 1 = 3628800 $, and the sum of the digits in the number $ 10! $ is $ 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27 $.

Find the sum of the digits in the number $ 100! $.


In [20]:
@time println(sum(digits(factorial(big(100)))))


648

Problem 021: Amicable numbers

Let $ d(n) $ be defined as the sum of proper divisors of $ n $ (numbers less than $ n $ which divide evenly into $ n $). If $ d(a) = b $ and $ d(b) = a $, where $ a ≠ b $, then $ a $ and $ b $ are an amicable pair and each of $ a $ and $ b $ are called amicable numbers.

For example, the proper divisors of $ 220 $ are $ 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110 $; therefore $ d(220) = 284 $. The proper divisors of $ 284 $ are $ 1, 2, 4, 71, 142 $; so $ d(284) = 220 $.

Evaluate the sum of all the amicable numbers under $ 10000 $.


In [21]:
function sumamicable(limit::Int)::Int
	amicable = Int[]
	for i  2:limit
		j = sumdivisors(i) - i
		k = sumdivisors(j) - j
		if i  j && i == k    # Check for amicability
			i  amicable && append!(amicable, sort([i, j]))
		end
	end
	return sum(amicable)
end

@time println(sumamicable(10000))


31626

Problem 022: Names scores

Using names.txt (right click and 'Save Link/Target As...'), a 46K text file containing over five-thousand first names, begin by sorting it into alphabetical order. Then working out the alphabetical value for each name, multiply this value by its alphabetical position in the list to obtain a name score.

For example, when the list is sorted into alphabetical order, COLIN, which is worth $ 3 + 15 + 12 + 9 + 14 = 53 $, is the 938th name in the list. So, COLIN would obtain a score of $ 938 × 53 = 49714 $.

What is the total of all the name scores in the file?


In [22]:
alphabeticvalue(name::String)::Int  =  sum(char - 'A' + 1 for char in name)

function getwords(path::AbstractString)::Vector{String}
	words = open(path) do file
	    read(file, String)
	end
	return map(string, split(words, r"\W", keepempty=false))    # SubString to String
end

function totalscore(words::Vector{String})::Int
	sorted = sort(words)
	total::Int = 0
	for i  1:length(sorted)
		total += alphabeticvalue(sorted[i]) * i
	end
	return total
end

@time println(totalscore(getwords("p022_names.txt")))


871198282

Problem 023: Non-abundant sums

A perfect number is a number for which the sum of its proper divisors is exactly equal to the number. For example, the sum of the proper divisors of $ 28 $ would be $ 1 + 2 + 4 + 7 + 14 = 28 $, which means that $ 28 $ is a perfect number.

A number $ n $ is called deficient if the sum of its proper divisors is less than $ n $ and it is called abundant if this sum exceeds $ n $.

As $ 12 $ is the smallest abundant number, $ 1 + 2 + 3 + 4 + 6 = 16 $, the smallest number that can be written as the sum of two abundant numbers is $ 24 $. By mathematical analysis, it can be shown that all integers greater than $ 28123 $ can be written as the sum of two abundant numbers. However, this upper limit cannot be reduced any further by analysis even though it is known that the greatest number that cannot be expressed as the sum of two abundant numbers is less than this limit.

Find the sum of all the positive integers which cannot be written as the sum of two abundant numbers.


In [23]:
isabundant(n::Int)::Bool  =  (sumdivisors(n) - n) > n

function abundants(upperbound)::Vector{Bool}
	lowerbound::Int = 12
	isabundantarray::Vector{Bool} = falses(upperbound)
	for i  lowerbound:(upperbound - lowerbound)
		isabundant(i) && (isabundantarray[i] = true)
	end
	return isabundantarray
end

function nonabundantdecomposible_sum(upperbound::Int = 28123)::Int
	total::Int = 0
	lowerbound::Int = 12
	isabundantarray::Vector{Bool} = abundants(upperbound)

	for n  1:upperbound
		isdecomposible::Bool = false
		for i  lowerbound:(n - lowerbound)
			if isabundantarray[i] && isabundantarray[n - i]
				isdecomposible = true
				break
			end
		end
		if !isdecomposible
			total += n
		end
	end

	return total
end

@time println(nonabundantdecomposible_sum())


4179871

Problem 024: Lexicographic permutations

A permutation is an ordered arrangement of objects. For example, 3124 is one possible permutation of the digits 1, 2, 3 and 4. If all of the permutations are listed numerically or alphabetically, we call it lexicographic order. The lexicographic permutations of 0, 1 and 2 are:

012   021   102   120   201   210

What is the millionth lexicographic permutation of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9?


In [24]:
function permute(sortedcharacters::Vector{Char}, order::Int)::Vector{Char}
	n = length(sortedcharacters)
	thisorder::Int = 0
	upperbound::Int = factorial(n - 1)
	poschar::Int = 1

	order == upperbound && return sortedcharacters    # Base case

	# Find the first character.
	# E.g. If the permutation starts with 2, the order will be between 2⋅9! and 3⋅9!
	while thisorder + upperbound < order
		thisorder += upperbound
		poschar += 1
	end

	unusedcharacters = [sortedcharacters[1:(poschar - 1)]; sortedcharacters[(poschar + 1):end]]
	return [sortedcharacters[poschar]; permute(unusedcharacters, order - thisorder)]
end

@time println(String(permute(collect('0':'9'), 1_000_000)))


2783915460

Problem 025: 1000-digit Fibonacci number

The Fibonacci sequence is defined by the recurrence relation $ F_n = F_{n−1} + F_{n−2} $, where $ F_1 = 1 $ and $ F_2 = 1 $.

Hence the first 12 terms will be: \begin{align} F_{1} & = 1 \\ F_{2} & = 1 \\ F_{3} & = 2 \\ F_{4} & = 3 \\ F_{5} & = 5 \\ F_{6} & = 8 \\ F_{7} & = 13 \\ F_{8} & = 21 \\ F_{9} & = 34 \\ F_{10} & = 55 \\ F_{11} & = 89 \\ F_{12} & = 144 \\ \end{align}

The 12th term, $ F_{12} $, is the first term to contain three digits.

What is the index of the first term in the Fibonacci sequence to contain 1000 digits?


In [30]:
## Slower
function fibonacciindex_Binet(numdigits::Int)::Int
	index = 1
	while 1 + log10(fibonacci_Binet(index)) < numdigits
		index += 1
	end
	return index
end

function fibonacciindex_iter(numdigits::Int)::Int
	# sum::Int = 0
	a::BigInt = 1
	b::BigInt = 1
	index = 2
	while 1 + log10(b) < numdigits
		(a, b) = (b, a + b)
		index += 1
	end
	return index
end

@time println(fibonacciindex_Binet(1000))
@time println(fibonacciindex_iter(1000))


4782
  0.129602 seconds (158.14 k allocations: 9.013 MiB)
4782
  0.093103 seconds (57.84 k allocations: 3.423 MiB)

Problem 026: Reciprocal cycles

A unit fraction contains $ 1 $ in the numerator. The decimal representation of the unit fractions with denominators $ 2 $ to $ 10 $ are given: \begin{align} \frac12 & = 0.5 \\ \frac13 & = 0.\overline{3} \\ \frac14 & = 0.25 \\ \frac15 & = 0.2 \\ \frac16 & = 0.1\overline{6} \\ \frac17 & = 0.\overline{142857} \\ \frac18 & = 0.125 \\ \frac19 & = 0.\overline{1} \\ \frac{1}{10} & = 0.1 \\ \end{align} Where $ 0.1\overline{6} $ means $ 0.166666... $, and has a 1-digit recurring cycle. It can be seen that $ \frac17 $ has a 6-digit recurring cycle.

Find the value of $ d < 1000 $ for which $ \frac1d $ contains the longest recurring cycle in its decimal fraction part.

Solution

Method 1

The simplest approach is to use long division to find out when the remainder is repeats (or is 0).

Method 2

The idea comes from the following sources

I need to show that the final answer is the largest full reptend prime. Some guidance may be received from the following sources.

This has to be thought about and formalized.


In [3]:
# Method 1. Use long division and check for repetition of the remainder.
function recurrencelength(d::Int, base::Int = 10)::Int
	num = base
	remainders = Int[1]
	while true
		num = remainders[end] * base
		remainder = num % d
		remainder == 0  &&  return 0    # no recurrence

		pos = findall(x -> x == remainder, remainders)
		length(pos) != 0  &&  (return length(remainders) - pos[1] + 1)
		push!(remainders, remainder)
	end
end

function maxrecurrencelength(limit::Int, base::Int = 10)::Int
	sieve = primes(limit)
	return sieve[argmax(map(recurrencelength, sieve))]
end

@time println(maxrecurrencelength(1000))


983
  0.056083 seconds (211.85 k allocations: 9.521 MiB)

In [4]:
# Method 2: Find the largest full reptend prime.

# Use string instead of Integers to account for 0s.
# Also, permutations are more natural for strings than numbers.
function rotate(original::String)::Vector{String}
	len = length(original)
	rotations = Vector{String}(undef, len)
	rotations[1] = original
	for i  1:(len - 1)
		rotations[i + 1] = join([rotations[i][2:end], rotations[i][1]])
	end
	return rotations
end

function fermatquotient(prime::T, base::T = 10)::Union{T, BigInt} where T <: Integer
	return prime  19 ? (base^(prime - 1) - 1) ÷ prime : (big(base)^(prime - 1) - 1) ÷ prime
end

function isfullreptendprime(prime::T)::Bool where T <: Integer
	fq = fermatquotient(prime)
	rotations = rotate(string(fq, pad=(prime - 1)))    # Add leading 0s.
	return isempty(setdiff([string(fq * i, pad=(prime - 1)) for i  1:(prime - 1)], rotations))
end

function maxrecurringcycle(limit::Int)::Int
	sieve = primes(limit)
	for prime  reverse(sieve)
		isfullreptendprime(prime)  &&  return prime
	end
end

@time println(maxrecurringcycle(1000))


983
  0.159769 seconds (127.99 k allocations: 28.186 MiB, 8.37% gc time)

In [ ]:

Problem 028: Number spiral diagonals

Starting with the number $ 1 $ and moving to the right in a clockwise direction a 5 by 5 spiral is formed as follows:

21 22 23 24 25
20  7  8  9 10
19  6  1  2 11
18  5  4  3 12
17 16 15 14 13

It can be verified that the sum of the numbers on the diagonals is $ 101 $.

What is the sum of the numbers on the diagonals in a 1001 by 1001 spiral formed in the same way?

The matrix can be written as $$ \begin{matrix} 3^2 + 2 ⋅ 3 ⋅ 3 & & & & & & 3^2 + 2 ⋅ 3 ⋅ 4 \\ & 3^2 + 2 ⋅ 2 ⋅ 3 & & & & 3^2 + 2 ⋅ 2 ⋅ 4 & \\ & & 1^2 + 2 ⋅ 1 ⋅ 3 & & 1^2 + 2 ⋅ 1 ⋅ 4 & & \\ & & & 1 & & & \\ & & 1^2 + 2 ⋅ 1 ⋅ 2 & & 1^2 + 2 ⋅ 1 ⋅ 1 & & \\ & 3^2 + 2 ⋅ 2 ⋅ 2 & & & & 3^2 + 2 ⋅ 2 ⋅ 1 & \\ 3^2 + 2 ⋅ 3 ⋅ 2 & & & & & & 3^2 + 2 ⋅ 3 ⋅ 1 \end{matrix} $$

Let the dimension of the matrix be $ n \times n $, where $ n $ is necessarily odd. Let $ m = \frac{n - 1}{2} $. Then, going from inside to outside, the required sum is $$ 1 + \sum_{i = 1}^m \left[ 4(-1 + 2i)^2 + 2 i (1 + 2 + 3 + 4) \right] = 1 + 4m + 2m(m+1) + \frac83 m(m+1)(2m+1) . $$


In [25]:
function number_spiral_diagonals(n::Int)    # n must be odd
	m::Int = (n - 1) ÷ 2
	return 1 + 4 * m + 2 * m * (m+1) + 8 * m * (m+1) * (2m+1) ÷ 3
end

@time println(number_spiral_diagonals(1001))


669171001

Problem 033: Digit cancelling fractions

The fraction $ \frac{49}{98} $ is a curious fraction, as an inexperienced mathematician in attempting to simplify it may incorrectly believe that $ \frac{49}{98} = \frac{4}{8} $, which is correct, is obtained by cancelling the 9s.

We shall consider fractions like, $ \frac{30}{50} = \frac{3}{5} $, to be trivial examples.

There are exactly four non-trivial examples of this type of fraction, less than one in value, and containing two digits in the numerator and denominator.

If the product of these four fractions is given in its lowest common terms, find the value of the denominator.


In [3]:
function iscancelling(p::Int, q::Int)::Bool
	digitsp = digits(p)
	digitsq = digits(q)

	# Special cases
	length(Set(digitsp)) + length(Set(digitsq)) == length(Set([digitsp; digitsq]))  &&  return false    # Trivially false: no common elements
	isempty(setdiff(digitsp, digitsq))  &&  return false    # Trivially false, e.g. 12 and 21.
	p % 10 == q % 10 == 0  &&  return false    # Trivially true, so ignore.

	posq = 1
	while posq  length(digitsq)
		posp = findfirst([digitp == digitsq[posq] for digitp in digitsp])
		if !isnothing(posp)    # Remove the relevant elements
			digitsp = [digitsp[1:(posp - 1)]; digitsp[posp + 1:end]]
			digitsq = [digitsq[1:(posq - 1)]; digitsq[posq + 1:end]]
		end
		posq += 1
	end

	return parse(Int, join(string(d) for d in reverse(digitsp))) // parse(Int, join(string(d) for d in reverse(digitsq))) == p // q
end

function cancellingdenominator(numdigits::Int)::Int
	product = 1 // 1
	for p  10^(numdigits - 1):(10^numdigits - 1), q  (p + 1):(10^numdigits - 1)
		iscancelling(p, q)  &&  (product *= p//q)
	end
	return denominator(product)
end

@time println(cancellingdenominator(2))


100

Problem 034: Digit factorials

$ 145 $ is a curious number, as $ 1! + 4! + 5! = 1 + 24 + 120 = 145 $.

Find the sum of all numbers which are equal to the sum of the factorial of their digits.

Note: as $ 1! = 1 $ and $ 2! = 2 $ are not sums they are not included.


In [26]:
function sumdigitfactorial()::Int
	# Note that 9! + 9! = 2 ⋅ 9! > 99. At which point does this inequality reverse?
	# This can be further optimized. See
	# https://www.xarg.org/puzzle/project-euler/problem-34/
	function maxdigits()
		ninefactorial = factorial(9)
		i = 1
		num = 9
		while num < i * ninefactorial
			i += 1
			num = 10 * num + 9
		end
		return i
	end

	total = 0
	limit = 10^(maxdigits() + 1)
	for i  10:limit
		if sum(factorial(d) for d in digits(i)) == i
			total += i
		end
	end
	return total
end

@time println(sumdigitfactorial())


40730

Problem 035: Circular primes

The number $ 197 $, is called a circular prime because all rotations of the digits: 197, 971, and 719, are themselves prime.

There are thirteen such primes below $ 100 $: $ 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97 $.

How many circular primes are there below one million?


In [62]:
# ToDo

# This code is also suboptimal. It checks the primality of all of the rotations.
# For example, it will check if 197 is prime while checking for the prime circularity of each of 197, 971, and 719.

function rotate(n::Int)::Vector{Int}
	numdigits = length(digits(n))
	rotations = Vector{Int}(undef, numdigits)
	rotations[1] = n
	for i  1:(numdigits - 1)
		rotated = (rotations[i] % 10) * 10^(numdigits-1) + (rotations[i] ÷ 10)
		rotations[i + 1] = rotated
	end
	return rotations
end

function count_circular_primes(limit::Int)::Int
	count::Int = 0
	count1::Int = 0
	sieve = primes(limit)
	for p  sieve
		rotations = rotate(p)
# 		all(r ∈ sieve for r ∈ rotations)) && (count += 1)    # suboptimal: sieve is sorted.
		all(!isempty(searchsorted(sieve, r)) for r  rotations) && (count += 1)
	end
	return count
end
@time println(count_circular_primes(1_000_000))


55

Problem 041: Pandigital prime

We shall say that an $ n $-digit number is pandigital if it makes use of all the digits $ 1 $ to $ n $ exactly once. For example, $ 2143 $ is a $ 4 $-digit pandigital and is also prime.

What is the largest $ n $-digit pandigital prime that exists?

Clearly, for a $ n $-digit pandigital prime, it must be less than $ 987654321$. But the code does not run in finite time. ToDo.


In [28]:
# ToDo

function ispandigital(n::Int)::Bool
	decimal = digits(n)

	for i  1:length(decimal)
		length(filter(x -> x == i, decimal))  1 && return false
	end

	for i  union([0], (length(decimal)+1):9)
		length(filter(x -> x == i, decimal))  0 && return false
	end

	return true
end

function largest_pandigital_prime()::Int
	sieve = primes(987654321)
	for prime  Iterators.reverse(sieve)
		ispandigital(prime) && return prime
	end
end

# @time println(largest_pandigital_prime())


Out[28]:
largest_pandigital_prime (generic function with 1 method)

Problem 050: Consecutive prime sum

The prime $ 41 $, can be written as the sum of six consecutive primes, $ 41 = 2 + 3 + 5 + 7 + 11 + 13 $. This is the longest sum of consecutive primes that adds to a prime below one-hundred.

The longest sum of consecutive primes below one-thousand that adds to a prime, contains $ 21 $ terms, and is equal to $ 953 $.

Which prime, below one-million, can be written as the sum of the most consecutive primes?

Comment

Here the optimization criteria is not the sum, but the number of primes contributing to the sum.


In [37]:
function consecutiveprimesum(limit::Int)::Int
	sieve = primes(limit)
	nummax = 0
	Σ0 = 0
	for i  1:length(sieve)
		j = length(sieve)
		Σ = sum(sieve[i:end])
		while Σ >= limit || Σ  sieve    # Decrease until Σ < limit or is not prime
			Σ -= sieve[j]
			j -= 1
		end
		num = j - i + 1    # Number of consecutive primes
		if num > nummax
			nummax = num
			Σ0 = Σ
		end
	end
	return Σ0
end

@time println(consecutiveprimesum(1_000_000))


997651
 20.536356 seconds (154.99 k allocations: 22.965 GiB, 4.14% gc time)

Problem 067: Maximum path sum II

By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.

3
7 4
2 4 6
8 5 9 3

That is, $ 3 + 7 + 4 + 9 = 23 $.

Find the maximum total from top to bottom in p067_triangle.txt (right click and 'Save Link/Target As...'), a 15K text file containing a triangle with one-hundred rows.

Comment: For the code, see Problem 18.


In [29]:
triangle = open("p067_triangle.txt") do file
    read(file, String)
end
@time println(max_path_sum(numberarray(triangle)))


7273

In [35]:
sum(primes(10))


Out[35]:
17

In [ ]: