The surrogate models supported in GPyOpt are:
model_type = GP in the GPyOpt wrapper.model_type = GP_MCMC in the GPyOpt wrapper.model_type = sparseGP in the GPyOpt wrapper. model_type = RF. To illustrate GPyOpt modularity, we have also wrapped the random forrest method implemetented in Scikit-learn.The supported acquisition functions in GPyOpt are:
acquisition_type = EI in the GPyOpt wrapper.acquisition_type = EI_MCMC in the GPyOpt wrapper. Only works if model_type is set to GP_MCMC.acquisition_type = MPI in the GPyOpt wrapper.acquisition_type = MPI_MCMC in the GPyOpt wrapper. Only works if model_type is set to GP_MCMC.acquisition_type = LCB in the GPyOpt wrapper.acquisition_type = LCB_MCMC in the GPyOpt wrapper. Only works if model_type is set to GP_MCMC.