In [1]:
    
%cat 0Source_Citation.txt
    
    
In [2]:
    
%matplotlib inline
# %matplotlib notebook # for interactive
    
For high dpi displays.
In [3]:
    
%config InlineBackend.figure_format = 'retina'
    
In [4]:
    
import uncertainties as uct
import numpy as np
import matplotlib.pyplot as plt
from uncertainties import unumpy as unp
import pytheos as eos
    
In [5]:
    
v0 = 3.9231**3
v = np.linspace(v0, v0 * 0.8, 20)
    
In [6]:
    
p_th = eos.dorogokupets2007_pth(v, 2000., v0, 2.82, 1.83, 8.11, 220., 1, 4)
    
In [7]:
    
help(eos.zharkov_panh)
    
    
In [8]:
    
p_anh = eos.zharkov_panh(v, 2000., v0, -166.9e-6, 4.32, 1, 4)
    
In [9]:
    
help(eos.zharkov_pel)
    
    
In [10]:
    
p_el = eos.zharkov_pel(v, 2000., v0, 260.e-6, 2.4, 1, 4)
    
In [11]:
    
plt.plot(v, p_th, label='$P_{th}$')
plt.plot(v, p_el, label='$P_{el}$')
plt.plot(v, p_anh, label='$P_{anh}$')
plt.legend();
    
    
We call the built-in dorogokupets2007 scale in pytheos.
In [12]:
    
dorogokupets2007_pt = eos.platinum.Dorogokupets2007()
    
In [13]:
    
help(dorogokupets2007_pt)
    
    
In [14]:
    
p = dorogokupets2007_pt.cal_p(v, 2000.)
    
In [15]:
    
plt.plot(unp.nominal_values(p), p_th, label='$P_{th}$')
plt.plot(unp.nominal_values(p), p_el, label='$P_{el}$')
plt.plot(unp.nominal_values(p), p_anh, label='$P_{anh}$')
plt.legend();
    
    
In [ ]: