In [35]:
import pyPLY
# see separate examples for details.
GraphiteEpoxy = pyPLY.CompositeMaterial()
GraphiteEpoxy.define("GraphiteEpoxy", "metric", E11=170e9, E22=10e9, G12=13e9, niu12=0.3, thk=0.125e-3,
Sigma_ut0 = 1500e6, Sigma_uc0 = 1200e6, Sigma_ut90 = 50e6, Sigma_uc90 = 100e6, Tau_u = 75e6,
alpha_11 = -0.9e-6, alpha_22 = 27.0e-6, beta_11 = 150e-6, beta_22 = 4800e-6)
layer1 = pyPLY.Lamina()
layer2 = pyPLY.Lamina()
layer3 = pyPLY.Lamina()
layer4 = pyPLY.Lamina()
layer5 = pyPLY.Lamina()
layer6 = pyPLY.Lamina()
layer1.define("Layer_1", 1, 30)
layer2.define("Layer_2", 1, 0)
layer3.define("Layer_3", 1, 90)
layer4.define("Layer_4", 1, 90)
layer5.define("Layer_5", 1, 0)
layer6.define("Layer_6", 1, 30)
layer1.update()
layer2.update()
layer3.update()
layer4.update()
layer5.update()
layer6.update()
laminate1 = pyPLY.Laminate()
laminate1.add_Lamina(layer1)
laminate1.add_Lamina(layer2)
laminate1.add_Lamina(layer3)
laminate1.add_Lamina(layer4)
laminate1.add_Lamina(layer5)
laminate1.add_Lamina(layer6)
laminate1.update()
In [36]:
load1 = pyPLY.Loading()
load1.define_Load(0,0,0,0,0,0,-155,0.5)
load1.apply_To(laminate1)
In [37]:
from pyPLYTools import LXMatrix
from IPython.display import Latex
Latex("$abd = " + LXMatrix(laminate1.abd, '.3e', ipython=True) + "$")
Out[37]:
In [38]:
Latex("$ABD = " + LXMatrix(laminate1.ABD, '.3e', ipython=True) + "$")
Out[38]:
The effective extensional moduli of the laminate are:
In [39]:
Latex("$E_{x}^{ex} = " + '{0:.3}'.format(laminate1.Ex) + "$")
Out[39]:
In [40]:
Latex("$E_{y}^{ex} = " + '{0:.3}'.format(laminate1.Ey) + "$")
Out[40]:
In [41]:
Latex("$G_{xy}^{ex} = " + '{0:.3}'.format(laminate1.Gxy) + "$")
Out[41]:
The flexural Poisson ratios and the flexural coefficients of mutual influence are:
In [42]:
Latex("$\nu_{xy}^{fl} = " + '{0:.3}'.format(laminate1.niuxyfl) + "$")
Out[42]:
In [43]:
Latex("$\nu_{yx}^{fl} = " + '{0:.3}'.format(laminate1.niuyxfl) + "$")
Out[43]: