In [1]:
from lightning import Lightning
from numpy import random, arange, asarray, corrcoef, argsort, array
import networkx as nx
from sklearn import datasets
In [2]:
lgn = Lightning(ipython=True, host='http://public.lightning-viz.org')
Matrices are useful ways to visualize dense tables and correlation matrices data.
First we show a random matrix with default styles.
You can us the arrow keys to change the contrast (up/down) or the colormap (left/right).
In [3]:
mat = random.randn(10,10)
lgn.matrix(mat)
Out[3]:
Rectanglular matrices will automatically size appropriately.
In [4]:
mat = random.randn(10,20)
lgn.matrix(mat)
Out[4]:
In [5]:
mat = random.randn(20,10)
lgn.matrix(mat)
Out[5]:
Matrices can be rendered using any colorbrewer colormaps.
In [6]:
mat = random.rand(10,10)
lgn.matrix(mat, colormap='Reds')
Out[6]:
In [7]:
mat = random.rand(10,10)
lgn.matrix(mat, colormap='Spectral')
Out[7]:
You can label the rows and columns of a matrix. Clicking on the text labels will highlight those rows and columns -- try it!
In [8]:
n, m = (8, 16)
mat = arange(n*m).reshape(n,m)
rows = ['row ' + str(i) for i in range(n)]
columns = ['col ' + str(i) for i in range(m)]
lgn.matrix(mat, row_labels=rows, column_labels=columns)
Out[8]:
You can also turn on labeling of cells by their value.
In [9]:
mat = arange(n*m).reshape(n,m)
lgn.matrix(mat, numbers=True)
Out[9]: