In [46]:
from lightning import Lightning
from numpy import random, asarray, concatenate
from sklearn import datasets
In [47]:
lgn = Lightning(ipython=True, host='http://public.lightning-viz.org')
The image plot type shows an image with zooming and panning.
Lightning's image viewer is powered by leaflet, so easily handles panning through very large images.
In [48]:
imgs = datasets.load_sample_images().images
lgn.image(imgs[0])
Out[48]:
Single-channel images will automatically be presented as grayscale.
In [49]:
imgs = datasets.load_sample_images().images
lgn.image(imgs[0][:,:,0])
Out[49]:
The usual sizing arguments can be used to set the image size in pixels.
In [50]:
imgs = datasets.load_sample_images().images
lgn.image(imgs[0], width=400)
Out[50]: