In [ ]:
import pandas as pd
import numpy as np
import os
from bqplot import (
LogScale, LinearScale, OrdinalColorScale, ColorAxis,
Axis, Scatter, Lines, CATEGORY10, Label, Figure, Tooltip
)
from ipywidgets import HBox, VBox, IntSlider, Play, jslink
In [ ]:
initial_year = 1800
In [ ]:
data = pd.read_json(os.path.abspath('./nations.json'))
In [ ]:
def clean_data(data):
for column in ['income', 'lifeExpectancy', 'population']:
data = data.drop(data[data[column].apply(len) <= 4].index)
return data
def extrap_interp(data):
data = np.array(data)
x_range = np.arange(1800, 2009, 1.)
y_range = np.interp(x_range, data[:, 0], data[:, 1])
return y_range
def extrap_data(data):
for column in ['income', 'lifeExpectancy', 'population']:
data[column] = data[column].apply(extrap_interp)
return data
In [ ]:
data = clean_data(data)
data = extrap_data(data)
In [ ]:
income_min, income_max = np.min(data['income'].apply(np.min)), np.max(data['income'].apply(np.max))
life_exp_min, life_exp_max = np.min(data['lifeExpectancy'].apply(np.min)), np.max(data['lifeExpectancy'].apply(np.max))
pop_min, pop_max = np.min(data['population'].apply(np.min)), np.max(data['population'].apply(np.max))
In [ ]:
def get_data(year):
year_index = year - 1800
income = data['income'].apply(lambda x: x[year_index])
life_exp = data['lifeExpectancy'].apply(lambda x: x[year_index])
pop = data['population'].apply(lambda x: x[year_index])
return income, life_exp, pop
In [ ]:
tt = Tooltip(fields=['name', 'x', 'y'], labels=['Country Name', 'Income per Capita', 'Life Expectancy'])
In [ ]:
year_label = Label(x=[0.75], y=[0.10], font_size=52, font_weight='bolder', colors=['orange'],
text=[str(initial_year)], enable_move=True)
In [ ]:
x_sc = LogScale(min=income_min, max=income_max)
y_sc = LinearScale(min=life_exp_min, max=life_exp_max)
c_sc = OrdinalColorScale(domain=data['region'].unique().tolist(), colors=CATEGORY10[:6])
size_sc = LinearScale(min=pop_min, max=pop_max)
In [ ]:
ax_y = Axis(label='Life Expectancy', scale=y_sc, orientation='vertical', side='left', grid_lines='solid')
ax_x = Axis(label='Income per Capita', scale=x_sc, grid_lines='solid')
In [ ]:
# Start with the first year's data
cap_income, life_exp, pop = get_data(initial_year)
In [ ]:
wealth_scat = Scatter(x=cap_income, y=life_exp, color=data['region'], size=pop,
names=data['name'], display_names=False,
scales={'x': x_sc, 'y': y_sc, 'color': c_sc, 'size': size_sc},
default_size=4112, tooltip=tt, animate=True, stroke='Black',
unhovered_style={'opacity': 0.5})
In [ ]:
nation_line = Lines(x=data['income'][0], y=data['lifeExpectancy'][0], colors=['Gray'],
scales={'x': x_sc, 'y': y_sc}, visible=False)
In [ ]:
time_interval = 10
In [ ]:
fig = Figure(marks=[wealth_scat, year_label, nation_line], axes=[ax_x, ax_y],
title='Health and Wealth of Nations', animation_duration=time_interval)
In [ ]:
year_slider = IntSlider(min=1800, max=2008, step=1, description='Year', value=initial_year)
In [ ]:
def hover_changed(change):
if change.new is not None:
nation_line.x = data['income'][change.new + 1]
nation_line.y = data['lifeExpectancy'][change.new + 1]
nation_line.visible = True
else:
nation_line.visible = False
wealth_scat.observe(hover_changed, 'hovered_point')
In [ ]:
def year_changed(change):
wealth_scat.x, wealth_scat.y, wealth_scat.size = get_data(year_slider.value)
year_label.text = [str(year_slider.value)]
year_slider.observe(year_changed, 'value')
In [ ]:
play_button = Play(min=1800, max=2008, interval=time_interval)
jslink((play_button, 'value'), (year_slider, 'value'))
This is a recreation in D3 of Gapminder’s Wealth & Health of Nations, made famous by Hans Rosling’s memorable 2006 TED talk. It shows the dynamic fluctuation in per-capita income (x), life expectancy (y) and population (radius) of 180 nations over the last 209 years. Nations are colored by geographic region; mouseover to read their names.
In [ ]:
VBox([HBox([play_button, year_slider]), fig])