Fitting 3 folds for each of 12 candidates, totalling 36 fits
[CV] n_estimators=50, learning_rate=0.1, max_depth=2 .................
[CV] n_estimators=50, learning_rate=0.1, max_depth=2, score=0.008441 - 7.2s
[CV] n_estimators=50, learning_rate=0.1, max_depth=2 .................
[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 7.2s remaining: 0.0s
[CV] n_estimators=50, learning_rate=0.1, max_depth=2, score=0.007748 - 7.4s
[CV] n_estimators=50, learning_rate=0.1, max_depth=2 .................
[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 14.7s remaining: 0.0s
[CV] n_estimators=50, learning_rate=0.1, max_depth=2, score=0.008667 - 9.7s
[CV] n_estimators=100, learning_rate=0.1, max_depth=2 ................
[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 24.4s remaining: 0.0s
[CV] n_estimators=100, learning_rate=0.1, max_depth=2, score=0.009753 - 16.7s
[CV] n_estimators=100, learning_rate=0.1, max_depth=2 ................
[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 41.1s remaining: 0.0s
[CV] n_estimators=100, learning_rate=0.1, max_depth=2, score=0.008819 - 18.7s
[CV] n_estimators=100, learning_rate=0.1, max_depth=2 ................
[CV] n_estimators=100, learning_rate=0.1, max_depth=2, score=0.009918 - 21.5s
[CV] n_estimators=50, learning_rate=0.1, max_depth=3 .................
[CV] n_estimators=50, learning_rate=0.1, max_depth=3, score=0.009031 - 15.2s
[CV] n_estimators=50, learning_rate=0.1, max_depth=3 .................
[CV] n_estimators=50, learning_rate=0.1, max_depth=3, score=0.008158 - 14.6s
[CV] n_estimators=50, learning_rate=0.1, max_depth=3 .................
[CV] n_estimators=50, learning_rate=0.1, max_depth=3, score=0.009717 - 13.7s
[CV] n_estimators=100, learning_rate=0.1, max_depth=3 ................
[CV] n_estimators=100, learning_rate=0.1, max_depth=3, score=0.009725 - 29.4s
[CV] n_estimators=100, learning_rate=0.1, max_depth=3 ................
[CV] n_estimators=100, learning_rate=0.1, max_depth=3, score=0.008598 - 35.2s
[CV] n_estimators=100, learning_rate=0.1, max_depth=3 ................
[CV] n_estimators=100, learning_rate=0.1, max_depth=3, score=0.010174 - 29.1s
[CV] n_estimators=50, learning_rate=0.1, max_depth=4 .................
[CV] n_estimators=50, learning_rate=0.1, max_depth=4, score=0.009351 - 24.0s
[CV] n_estimators=50, learning_rate=0.1, max_depth=4 .................
[CV] n_estimators=50, learning_rate=0.1, max_depth=4, score=0.008460 - 22.7s
[CV] n_estimators=50, learning_rate=0.1, max_depth=4 .................
[CV] n_estimators=50, learning_rate=0.1, max_depth=4, score=0.009792 - 20.5s
[CV] n_estimators=100, learning_rate=0.1, max_depth=4 ................
[CV] n_estimators=100, learning_rate=0.1, max_depth=4, score=0.009582 - 49.0s
[CV] n_estimators=100, learning_rate=0.1, max_depth=4 ................
[CV] n_estimators=100, learning_rate=0.1, max_depth=4, score=0.008706 - 36.8s
[CV] n_estimators=100, learning_rate=0.1, max_depth=4 ................
[CV] n_estimators=100, learning_rate=0.1, max_depth=4, score=0.009671 - 45.3s
[CV] n_estimators=50, learning_rate=0.2, max_depth=2 .................
[CV] n_estimators=50, learning_rate=0.2, max_depth=2, score=0.009964 - 9.6s
[CV] n_estimators=50, learning_rate=0.2, max_depth=2 .................
[CV] n_estimators=50, learning_rate=0.2, max_depth=2, score=0.008996 - 9.5s
[CV] n_estimators=50, learning_rate=0.2, max_depth=2 .................
[CV] n_estimators=50, learning_rate=0.2, max_depth=2, score=0.009602 - 9.0s
[CV] n_estimators=100, learning_rate=0.2, max_depth=2 ................
[CV] n_estimators=100, learning_rate=0.2, max_depth=2, score=0.010249 - 17.7s
[CV] n_estimators=100, learning_rate=0.2, max_depth=2 ................
[CV] n_estimators=100, learning_rate=0.2, max_depth=2, score=0.008991 - 17.3s
[CV] n_estimators=100, learning_rate=0.2, max_depth=2 ................
[CV] n_estimators=100, learning_rate=0.2, max_depth=2, score=0.009665 - 25.7s
[CV] n_estimators=50, learning_rate=0.2, max_depth=3 .................
[CV] n_estimators=50, learning_rate=0.2, max_depth=3, score=0.009394 - 17.0s
[CV] n_estimators=50, learning_rate=0.2, max_depth=3 .................
[CV] n_estimators=50, learning_rate=0.2, max_depth=3, score=0.008368 - 14.4s
[CV] n_estimators=50, learning_rate=0.2, max_depth=3 .................
[CV] n_estimators=50, learning_rate=0.2, max_depth=3, score=0.009895 - 13.8s
[CV] n_estimators=100, learning_rate=0.2, max_depth=3 ................
[CV] n_estimators=100, learning_rate=0.2, max_depth=3, score=0.009535 - 28.2s
[CV] n_estimators=100, learning_rate=0.2, max_depth=3 ................
[CV] n_estimators=100, learning_rate=0.2, max_depth=3, score=0.008117 - 35.1s
[CV] n_estimators=100, learning_rate=0.2, max_depth=3 ................
[CV] n_estimators=100, learning_rate=0.2, max_depth=3, score=0.009039 - 26.7s
[CV] n_estimators=50, learning_rate=0.2, max_depth=4 .................
[CV] n_estimators=50, learning_rate=0.2, max_depth=4, score=0.009296 - 25.6s
[CV] n_estimators=50, learning_rate=0.2, max_depth=4 .................
[CV] n_estimators=50, learning_rate=0.2, max_depth=4, score=0.008131 - 27.7s
[CV] n_estimators=50, learning_rate=0.2, max_depth=4 .................
[CV] n_estimators=50, learning_rate=0.2, max_depth=4, score=0.008773 - 27.7s
[CV] n_estimators=100, learning_rate=0.2, max_depth=4 ................
[CV] n_estimators=100, learning_rate=0.2, max_depth=4, score=0.007926 - 44.9s
[CV] n_estimators=100, learning_rate=0.2, max_depth=4 ................
[CV] n_estimators=100, learning_rate=0.2, max_depth=4, score=0.006208 - 36.1s
[CV] n_estimators=100, learning_rate=0.2, max_depth=4 ................
[CV] n_estimators=100, learning_rate=0.2, max_depth=4, score=0.007413 - 39.3s
[Parallel(n_jobs=1)]: Done 36 out of 36 | elapsed: 14.1min finished
0.00963492633263067
XGBRegressor(base_score=0.5, colsample_bylevel=1, colsample_bytree=1, gamma=0,
learning_rate=0.2, max_delta_step=0, max_depth=2,
min_child_weight=1, missing=None, n_estimators=100, nthread=-1,
objective='reg:linear', reg_alpha=0, reg_lambda=1,
scale_pos_weight=1, seed=0, silent=True, subsample=1)