Power to Gas Example with Optional Coupling to Heat Sector (via Boiler OR Combined-Heat-and-Power (CHP))

A location has an electric, gas and heat bus. The primary source is wind power, which can be converted to gas. The gas can be stored to convert into electricity or heat (with either a boiler or a CHP).


In [ ]:
import pypsa
import pandas as pd

from pyomo.environ import Constraint

import numpy as np

import matplotlib.pyplot as plt


%matplotlib inline

Combined-Heat-and-Power (CHP) parameterisation


In [ ]:
#follows http://www.ea-energianalyse.dk/reports/student-reports/integration_of_50_percent_wind%20power.pdf pages 35-6
    
#which follows http://www.sciencedirect.com/science/article/pii/030142159390282K
    
#ratio between max heat output and max electric output
nom_r = 1.
        
#backpressure limit
c_m = 0.75
        
#marginal loss for each additional generation of heat
c_v = 0.15

In [ ]:
#Graph for the case that max heat output equals max electric output

fig,ax = plt.subplots(1,1)

fig.set_size_inches((7,7))

t = 0.01

ph = np.arange(0,1.0001,t)

ax.plot(ph,c_m*ph)

ax.set_xlabel("P_heat_out")

ax.set_ylabel("P_elec_out")

ax.grid(True)

ax.set_xlim([0,1.1])
ax.set_ylim([0,1.1])

ax.text(0.1,0.7,"Allowed output",color="r")

ax.plot(ph,1-c_v*ph)

for i in range(1,10):
    k = 0.1*i
    x = np.arange(0,k/(c_m+c_v),t)
    ax.plot(x,k-c_v*x,color="g",alpha=0.5)
    
ax.text(0.05,0.41,"iso-fuel-lines",color="g",rotation=-7)

ax.fill_between(ph,c_m*ph,1-c_v*ph,facecolor="r",alpha=0.5)

fig.tight_layout()

if False:
    fig.savefig("chp_feasible.pdf",transparent=True)

Now do optimisation


In [ ]:
heat = True
chp = True


network = pypsa.Network()

network.set_snapshots(pd.date_range("2016-01-01 00:00","2016-01-01 03:00",freq="H"))

network.add("Bus",
            "0",
            carrier="AC")

network.add("Bus",
            "0 gas",
            carrier="gas")

network.add("Carrier",
            "wind")

network.add("Carrier",
            "gas",
            co2_emissions=0.2)

network.add("GlobalConstraint",
            "co2_limit",
            sense="<=",
            constant=0.)


network.add("Generator",
            "wind turbine",
            bus="0",
            carrier="wind",
            p_nom_extendable=True,
            p_max_pu=[0.,0.2,0.7,0.4],
            capital_cost=1000)

network.add("Load",
            "load",
            bus="0",
            p_set=5.)



network.add("Link",
            "P2G",
            bus0="0",
            bus1="0 gas",
            efficiency=0.6,
            capital_cost=1000,
            p_nom_extendable=True)

network.add("Link",
            "generator",
            bus0="0 gas",
            bus1="0",
            efficiency=0.468,
            capital_cost=400,
            p_nom_extendable=True)


network.add("Store",
            "gas depot",
            bus="0 gas",
            e_cyclic=True,
            e_nom_extendable=True)


if heat:
    
    network.add("Bus",
            "0 heat",
            carrier="heat")
    
    network.add("Carrier",
               "heat")

    network.add("Load",
            "heat load",
            bus="0 heat",
            p_set=10.)

    network.add("Link",
            "boiler",
            bus0="0 gas",
            bus1="0 heat",
            efficiency=0.9,
            capital_cost=300,
            p_nom_extendable=True)
    
    network.add("Store",
            "water tank",
            bus="0 heat",
            e_cyclic=True,
            e_nom_extendable=True)    


if heat and chp:

    #Guarantees ISO fuel lines, i.e. fuel consumption p_b0 + p_g0 = constant along p_g1 + c_v p_b1 = constant
    network.links.at["boiler","efficiency"] = network.links.at["generator","efficiency"]/c_v
    
    def extra_functionality(network,snapshots):

        #Guarantees heat output and electric output nominal powers are proportional
        network.model.chp_nom = Constraint(rule=lambda model : network.links.at["generator","efficiency"]*nom_r*model.link_p_nom["generator"] == network.links.at["boiler","efficiency"]*model.link_p_nom["boiler"])

        #Guarantees c_m p_b1  \leq p_g1
        def backpressure(model,snapshot):
            return c_m*network.links.at["boiler","efficiency"]*model.link_p["boiler",snapshot] <= network.links.at["generator","efficiency"]*model.link_p["generator",snapshot] 
        
        network.model.backpressure = Constraint(list(snapshots),rule=backpressure)
        
        #Guarantees p_g1 +c_v p_b1 \leq p_g1_nom
        def top_iso_fuel_line(model,snapshot):
            return model.link_p["boiler",snapshot] + model.link_p["generator",snapshot] <= model.link_p_nom["generator"]
        
        network.model.top_iso_fuel_line = Constraint(list(snapshots),rule=top_iso_fuel_line)
        
else:
    extra_functionality = None

In [ ]:
network.lopf(network.snapshots, extra_functionality=extra_functionality)
print("Objective:",network.objective)

In [ ]:
network.loads_t.p

In [ ]:
network.links.p_nom_opt

In [ ]:
#CHP is dimensioned by the heat demand met in three hours when no wind
4*10./3/network.links.at["boiler","efficiency"]

In [ ]:
#elec is set by the heat demand
28.490028*0.15

In [ ]:
network.links_t["p0"]

In [ ]:
network.links_t["p1"]

In [ ]:
print(pd.DataFrame({attr: network.stores_t[attr]["gas depot"] for attr in ["p","e"]}))

In [ ]:
if heat:
    print(pd.DataFrame({attr: network.stores_t[attr]["water tank"] for attr in ["p","e"]}))
    print(pd.DataFrame({attr: network.links_t[attr]["boiler"] for attr in ["p0","p1"]}))

In [ ]:
print(network.stores.loc["gas depot"])

In [ ]:
print(network.generators.loc["wind turbine"])

In [ ]:
print(network.links.p_nom_opt)

In [ ]:
#Calculate the overall efficiency of the CHP

eta_elec = network.links.at["generator","efficiency"]

r = 1/c_m

#P_h = r*P_e

print((1+r)/((1/eta_elec)*(1+c_v*r)))