Link the matplotlib gallery at https://github.com/rasbt/matplotlib-gallery
In [1]:
%load_ext watermark
In [2]:
%watermark -u -v -d -p matplotlib,numpy
[More info](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/ipython_magic/watermark.ipynb) about the `%watermark` extension
In [3]:
%matplotlib inline
In [21]:
import matplotlib.pyplot as plt
x = [1, 2, 3]
y_1 = [50, 60, 70]
y_2 = [20, 30, 40]
plt.plot(x, y_1, marker='x')
plt.plot(x, y_2, marker='^')
plt.xlim([0, len(x)+1])
plt.ylim([0, max(y_1+y_2) + 10])
plt.xlabel('x-axis label')
plt.ylabel('y-axis label')
plt.title('Simple line plot')
plt.legend(['sample 1', 'sample2'], loc='upper left')
plt.show()
In [25]:
import matplotlib.pyplot as plt
x = [1, 2, 3]
y_1 = [50, 60, 70]
y_2 = [20, 30, 40]
y_1_err = [4.3, 4.5, 2.0]
y_2_err = [2.3, 6.9, 2.1]
x_labels = ["x1", "x2", "x3"]
plt.errorbar(x, y_1, yerr=y_1_err, fmt='-x')
plt.errorbar(x, y_2, yerr=y_2_err, fmt='-^')
plt.xticks(x, x_labels)
plt.xlim([0, len(x)+1])
plt.ylim([0, max(y_1+y_2) + 10])
plt.xlabel('x-axis label')
plt.ylabel('y-axis label')
plt.title('Line plot with error bars')
plt.legend(['sample 1', 'sample2'], loc='upper left')
plt.show()
In [24]:
import matplotlib.pyplot as plt
x = [1, 2, 3]
y_1 = [0.5,7.0,60.0]
y_2 = [0.3,6.0,30.0]
x_labels = ["x1", "x2", "x3"]
plt.plot(x, y_1, marker='x')
plt.plot(x, y_2, marker='^')
plt.xticks(x, x_labels)
plt.xlim([0,4])
plt.xlabel('x-axis label')
plt.ylabel('y-axis label')
plt.yscale('log')
plt.title('Line plot with x-axis labels and log-scale')
plt.legend(['sample 1', 'sample2'], loc='upper left')
plt.show()
In [4]:
import numpy as np
from matplotlib import pyplot as plt
import math
def pdf(x, mu=0, sigma=1):
"""
Calculates the normal distribution's probability density
function (PDF).
"""
term1 = 1.0 / ( math.sqrt(2*np.pi) * sigma )
term2 = np.exp( -0.5 * ( (x-mu)/sigma )**2 )
return term1 * term2
x = np.arange(0, 100, 0.05)
pdf1 = pdf(x, mu=5, sigma=2.5**0.5)
pdf2 = pdf(x, mu=10, sigma=6**0.5)
plt.plot(x, pdf1)
plt.plot(x, pdf2)
plt.title('Probability Density Functions')
plt.ylabel('p(x)')
plt.xlabel('random variable x')
plt.legend(['pdf1 ~ N(5,2.5)', 'pdf2 ~ N(10,6)'], loc='upper right')
plt.ylim([0,0.5])
plt.xlim([0,20])
plt.show()
In [25]:
import numpy as np
import matplotlib.pyplot as plt
A = np.arange(1, 11)
B = np.random.randn(10) # 10 rand. values from a std. norm. distr.
C = B.cumsum()
fig, (ax0, ax1) = plt.subplots(ncols=2, sharex=True, sharey=True, figsize=(10,5))
## A) via plt.step()
ax0.step(A, C, label='cumulative sum') # cumulative sum via numpy.cumsum()
ax0.scatter(A, B, label='actual values')
ax0.set_ylabel('Y value')
ax0.legend(loc='upper right')
## B) via plt.plot()
ax1.plot(A, C, label='cumulative sum') # cumulative sum via numpy.cumsum()
ax1.scatter(A, B, label='actual values')
ax1.legend(loc='upper right')
fig.text(0.5, 0.04, 'sample number', ha='center', va='center')
fig.text(0.5, 0.95, 'Cumulative sum of 10 samples from a random normal distribution', ha='center', va='center')
plt.show()
In [6]:
import numpy as np
import matplotlib.pyplot as plt
A = np.arange(1, 11)
B = np.random.randn(10) # 10 rand. values from a std. norm. distr.
plt.figure(figsize=(10,5))
plt.step(np.sort(B), A)
plt.ylabel('sample count')
plt.xlabel('x value')
plt.title('Number of samples at a certain threshold')
plt.show()
More color maps are available at http://wiki.scipy.org/Cookbook/Matplotlib/Show_colormaps
In [4]:
import numpy as np
import matplotlib.pyplot as plt
fig, (ax0, ax1) = plt.subplots(1,2, figsize=(14, 7))
samples = range(1,16)
# Default Color Cycle
for i in samples:
ax0.plot([0, 10], [0, i], label=i, lw=3)
# Colormap
colormap = plt.cm.Paired
plt.gca().set_color_cycle([colormap(i) for i in np.linspace(0, 0.9, len(samples))])
for i in samples:
ax1.plot([0, 10], [0, i], label=i, lw=3)
# Annotation
ax0.set_title('Default color cycle')
ax1.set_title('plt.cm.Paired colormap')
ax0.legend(loc='upper left')
ax1.legend(loc='upper left')
plt.show()
In [27]:
import numpy as np
import matplotlib.pyplot as plt
markers = [
'.', # point
',', # pixel
'o', # circle
'v', # triangle down
'^', # triangle up
'<', # triangle_left
'>', # triangle_right
'1', # tri_down
'2', # tri_up
'3', # tri_left
'4', # tri_right
'8', # octagon
's', # square
'p', # pentagon
'*', # star
'h', # hexagon1
'H', # hexagon2
'+', # plus
'x', # x
'D', # diamond
'd', # thin_diamond
'|', # vline
]
plt.figure(figsize=(13, 10))
samples = range(len(markers))
for i in samples:
plt.plot([i-1, i, i+1], [i, i, i], label=markers[i], marker=markers[i], markersize=10)
# Colormap
colormap = plt.cm.Paired
plt.gca().set_color_cycle([colormap(i) for i in np.linspace(0, 0.9, len(markers))])
# Annotation
plt.title('Matplotlib Marker styles', fontsize=20)
plt.ylim([-1, len(markers)+1])
plt.legend(loc='lower right')
plt.show()