Here we visualize filters and outputs using the network architecture proposed by Krizhevsky et al. for ImageNet and implemented in caffe
.
(This page follows DeCAF visualizations originally by Yangqing Jia.)
First, import required modules and set plotting parameters
In [1]:
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
# Make sure that caffe is on the python path:
caffe_root = '../' # this file is expected to be in {caffe_root}/examples
import sys
sys.path.insert(0, caffe_root + 'python')
import caffe
plt.rcParams['figure.figsize'] = (10, 10)
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
Run ./scripts/download_model_binary.py models/bvlc_reference_caffenet
to get the pretrained CaffeNet model, load the net, specify test phase and CPU mode, and configure input preprocessing.
In [2]:
net = caffe.Classifier(caffe_root + 'models/bvlc_reference_caffenet/deploy.prototxt',
caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel')
net.set_phase_test()
net.set_mode_cpu()
# input preprocessing: 'data' is the name of the input blob == net.inputs[0]
net.set_mean('data', np.load(caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy')) # ImageNet mean
net.set_raw_scale('data', 255) # the reference model operates on images in [0,255] range instead of [0,1]
net.set_channel_swap('data', (2,1,0)) # the reference model has channels in BGR order instead of RGB
Run a classification pass
In [3]:
scores = net.predict([caffe.io.load_image(caffe_root + 'examples/images/cat.jpg')])
The layer features and their shapes (10 is the batch size, corresponding to the the ten subcrops used by Krizhevsky et al.)
In [4]:
[(k, v.data.shape) for k, v in net.blobs.items()]
Out[4]:
The parameters and their shapes (each of these layers also has biases which are omitted here)
In [5]:
[(k, v[0].data.shape) for k, v in net.params.items()]
Out[5]:
Helper functions for visualization
In [6]:
# take an array of shape (n, height, width) or (n, height, width, channels)
# and visualize each (height, width) thing in a grid of size approx. sqrt(n) by sqrt(n)
def vis_square(data, padsize=1, padval=0):
data -= data.min()
data /= data.max()
# force the number of filters to be square
n = int(np.ceil(np.sqrt(data.shape[0])))
padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3)
data = np.pad(data, padding, mode='constant', constant_values=(padval, padval))
# tile the filters into an image
data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
plt.imshow(data)
The input image
In [7]:
# index four is the center crop
plt.imshow(net.deprocess('data', net.blobs['data'].data[4]))
The first layer filters, conv1
In [8]:
# the parameters are a list of [weights, biases]
filters = net.params['conv1'][0].data
vis_square(filters.transpose(0, 2, 3, 1))
The first layer output, conv1
(rectified responses of the filters above, first 36 only)
In [9]:
feat = net.blobs['conv1'].data[4, :36]
vis_square(feat, padval=1)
The second layer filters, conv2
There are 256 filters, each of which has dimension 5 x 5 x 48. We show only the first 48 filters, with each channel shown separately, so that each filter is a row.
In [10]:
filters = net.params['conv2'][0].data
vis_square(filters[:48].reshape(48**2, 5, 5))
The second layer output, conv2
(rectified, only the first 36 of 256 channels)
In [11]:
feat = net.blobs['conv2'].data[4, :36]
vis_square(feat, padval=1)
The third layer output, conv3
(rectified, all 384 channels)
In [12]:
feat = net.blobs['conv3'].data[4]
vis_square(feat, padval=0.5)
The fourth layer output, conv4
(rectified, all 384 channels)
In [13]:
feat = net.blobs['conv4'].data[4]
vis_square(feat, padval=0.5)
The fifth layer output, conv5
(rectified, all 256 channels)
In [14]:
feat = net.blobs['conv5'].data[4]
vis_square(feat, padval=0.5)
The fifth layer after pooling, pool5
In [15]:
feat = net.blobs['pool5'].data[4]
vis_square(feat, padval=1)
The first fully connected layer, fc6
(rectified)
We show the output values and the histogram of the positive values
In [16]:
feat = net.blobs['fc6'].data[4]
plt.subplot(2, 1, 1)
plt.plot(feat.flat)
plt.subplot(2, 1, 2)
_ = plt.hist(feat.flat[feat.flat > 0], bins=100)
The second fully connected layer, fc7
(rectified)
In [17]:
feat = net.blobs['fc7'].data[4]
plt.subplot(2, 1, 1)
plt.plot(feat.flat)
plt.subplot(2, 1, 2)
_ = plt.hist(feat.flat[feat.flat > 0], bins=100)
The final probability output, prob
In [18]:
feat = net.blobs['prob'].data[4]
plt.plot(feat.flat)
Out[18]:
Let's see the top 5 predicted labels.
In [19]:
# load labels
imagenet_labels_filename = caffe_root + 'data/ilsvrc12/synset_words.txt'
try:
labels = np.loadtxt(imagenet_labels_filename, str, delimiter='\t')
except:
!../data/ilsvrc12/get_ilsvrc_aux.sh
labels = np.loadtxt(imagenet_labels_filename, str, delimiter='\t')
# sort top k predictions from softmax output
top_k = net.blobs['prob'].data[4].flatten().argsort()[-1:-6:-1]
print labels[top_k]