Pandas:
Presented by Michael Ripperger
What is Pandas?
- Python package
- Functional toolkit
- Organizes data
- Manipulates data
- Analyzes data
Speed!
- Built upon Numpy
- Cython core
First data structure: Series
a 1
b 2
c 3
d 3
e 4
f 5
g 4
dtype: int64
Out[4]:
a 0.5
b 1.0
c 1.5
d 1.5
e 2.0
f 2.5
g 2.0
dtype: float64
Second data structure: DataFrame
- Similar to R's data frame
- Does everything Series can do
length_1 breadth_1 length_2 breadth_2
1 191 155 179 145
2 195 149 201 152
3 181 148 185 149
4 183 153 188 149
5 176 144 171 142
6 208 157 192 152
7 189 150 190 149
8 197 159 189 152
9 188 152 197 159
10 192 150 187 151
11 179 158 186 148
12 183 147 174 147
13 174 150 185 152
14 190 159 195 157
15 188 151 187 158
16 163 137 161 130
17 195 155 183 158
18 186 153 173 148
19 181 145 182 146
20 175 140 165 137
21 192 154 185 152
22 174 143 178 147
23 176 139 176 143
24 197 167 200 158
25 190 163 187 150
<class 'pandas.core.frame.DataFrame'>
Int64Index: 25 entries, 1 to 25
Data columns (total 4 columns):
length_1 25 non-null int64
breadth_1 25 non-null int64
length_2 25 non-null int64
breadth_2 25 non-null int64
dtypes: int64(4)
memory usage: 1000.0 bytes
Out[11]:
|
length_1 |
breadth_1 |
length_2 |
breadth_2 |
| 1 |
191 |
155 |
179 |
145 |
| 2 |
195 |
149 |
201 |
152 |
| 3 |
181 |
148 |
185 |
149 |
| 4 |
183 |
153 |
188 |
149 |
| 5 |
176 |
144 |
171 |
142 |
Out[12]:
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
... |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
| brother 1 |
29605 |
29055 |
26788 |
27999 |
25344 |
32656 |
28350 |
31323 |
28576 |
28800 |
... |
22331 |
30225 |
28458 |
26245 |
24500 |
29568 |
24882 |
24464 |
32899 |
30970 |
| brother 2 |
25955 |
30552 |
27565 |
28012 |
24282 |
29184 |
28310 |
28728 |
31323 |
28237 |
... |
20930 |
28914 |
25604 |
26572 |
22605 |
28120 |
26166 |
25168 |
31600 |
28050 |
2 rows × 25 columns
Out[13]:
|
brother 1 |
brother 2 |
| 1 |
29605 |
25955 |
| 2 |
29055 |
30552 |
| 3 |
26788 |
27565 |
| 4 |
27999 |
28012 |
| 5 |
25344 |
24282 |
Out[14]:
|
brother 1 |
brother 2 |
| 1 |
29.605 |
25.955 |
| 2 |
29.055 |
30.552 |
| 3 |
26.788 |
27.565 |
| 4 |
27.999 |
28.012 |
| 5 |
25.344 |
24.282 |
Out[15]:
|
brother 1 |
brother 2 |
| 2 |
29.055 |
30.552 |
| 3 |
26.788 |
27.565 |
| 4 |
27.999 |
28.012 |
| 9 |
28.576 |
31.323 |
| 13 |
26.100 |
28.120 |
| 14 |
30.210 |
30.615 |
| 15 |
28.388 |
29.546 |
| 19 |
26.245 |
26.572 |
| 22 |
24.882 |
26.166 |
| 23 |
24.464 |
25.168 |
Out[16]:
|
brother 1 |
brother 2 |
brother 2 greater? |
| 1 |
29.605 |
25.955 |
False |
| 2 |
29.055 |
30.552 |
True |
| 3 |
26.788 |
27.565 |
True |
| 4 |
27.999 |
28.012 |
True |
| 5 |
25.344 |
24.282 |
False |
Out[17]:
|
brother 1 |
brother 2 |
brother 2 greater? |
| 16 |
22.331 |
20.930 |
False |
| 23 |
24.464 |
25.168 |
True |
| 20 |
24.500 |
22.605 |
False |
| 22 |
24.882 |
26.166 |
True |
| 5 |
25.344 |
24.282 |
False |
Out[18]:
|
brother 1 |
brother 2 |
brother 2 greater? |
| 25 |
30.970 |
28.050 |
False |
| 24 |
32.899 |
31.600 |
False |
| 23 |
24.464 |
25.168 |
True |
| 22 |
24.882 |
26.166 |
True |
| 21 |
29.568 |
28.120 |
False |
1
brother 1 29.605
brother 2 25.955
brother 2 greater? False
Name: 1, dtype: object
2
brother 1 29.055
brother 2 30.552
brother 2 greater? True
Name: 2, dtype: object
SQL-like groupby operations
Out[20]:
|
mpg |
cyl |
disp |
hp |
drat |
wt |
qsec |
vs |
am |
gear |
carb |
| Mazda RX4 |
21.0 |
6 |
160.0 |
110 |
3.90 |
2.620 |
16.46 |
0 |
1 |
4 |
4 |
| Mazda RX4 Wag |
21.0 |
6 |
160.0 |
110 |
3.90 |
2.875 |
17.02 |
0 |
1 |
4 |
4 |
| Datsun 710 |
22.8 |
4 |
108.0 |
93 |
3.85 |
2.320 |
18.61 |
1 |
1 |
4 |
1 |
| Hornet 4 Drive |
21.4 |
6 |
258.0 |
110 |
3.08 |
3.215 |
19.44 |
1 |
0 |
3 |
1 |
| Hornet Sportabout |
18.7 |
8 |
360.0 |
175 |
3.15 |
3.440 |
17.02 |
0 |
0 |
3 |
2 |
| Valiant |
18.1 |
6 |
225.0 |
105 |
2.76 |
3.460 |
20.22 |
1 |
0 |
3 |
1 |
| Duster 360 |
14.3 |
8 |
360.0 |
245 |
3.21 |
3.570 |
15.84 |
0 |
0 |
3 |
4 |
| Merc 240D |
24.4 |
4 |
146.7 |
62 |
3.69 |
3.190 |
20.00 |
1 |
0 |
4 |
2 |
| Merc 230 |
22.8 |
4 |
140.8 |
95 |
3.92 |
3.150 |
22.90 |
1 |
0 |
4 |
2 |
| Merc 280 |
19.2 |
6 |
167.6 |
123 |
3.92 |
3.440 |
18.30 |
1 |
0 |
4 |
4 |
| Merc 280C |
17.8 |
6 |
167.6 |
123 |
3.92 |
3.440 |
18.90 |
1 |
0 |
4 |
4 |
| Merc 450SE |
16.4 |
8 |
275.8 |
180 |
3.07 |
4.070 |
17.40 |
0 |
0 |
3 |
3 |
| Merc 450SL |
17.3 |
8 |
275.8 |
180 |
3.07 |
3.730 |
17.60 |
0 |
0 |
3 |
3 |
| Merc 450SLC |
15.2 |
8 |
275.8 |
180 |
3.07 |
3.780 |
18.00 |
0 |
0 |
3 |
3 |
| Cadillac Fleetwood |
10.4 |
8 |
472.0 |
205 |
2.93 |
5.250 |
17.98 |
0 |
0 |
3 |
4 |
| Lincoln Continental |
10.4 |
8 |
460.0 |
215 |
3.00 |
5.424 |
17.82 |
0 |
0 |
3 |
4 |
| Chrysler Imperial |
14.7 |
8 |
440.0 |
230 |
3.23 |
5.345 |
17.42 |
0 |
0 |
3 |
4 |
| Fiat 128 |
32.4 |
4 |
78.7 |
66 |
4.08 |
2.200 |
19.47 |
1 |
1 |
4 |
1 |
| Honda Civic |
30.4 |
4 |
75.7 |
52 |
4.93 |
1.615 |
18.52 |
1 |
1 |
4 |
2 |
| Toyota Corolla |
33.9 |
4 |
71.1 |
65 |
4.22 |
1.835 |
19.90 |
1 |
1 |
4 |
1 |
| Toyota Corona |
21.5 |
4 |
120.1 |
97 |
3.70 |
2.465 |
20.01 |
1 |
0 |
3 |
1 |
| Dodge Challenger |
15.5 |
8 |
318.0 |
150 |
2.76 |
3.520 |
16.87 |
0 |
0 |
3 |
2 |
| AMC Javelin |
15.2 |
8 |
304.0 |
150 |
3.15 |
3.435 |
17.30 |
0 |
0 |
3 |
2 |
| Camaro Z28 |
13.3 |
8 |
350.0 |
245 |
3.73 |
3.840 |
15.41 |
0 |
0 |
3 |
4 |
| Pontiac Firebird |
19.2 |
8 |
400.0 |
175 |
3.08 |
3.845 |
17.05 |
0 |
0 |
3 |
2 |
| Fiat X1-9 |
27.3 |
4 |
79.0 |
66 |
4.08 |
1.935 |
18.90 |
1 |
1 |
4 |
1 |
| Porsche 914-2 |
26.0 |
4 |
120.3 |
91 |
4.43 |
2.140 |
16.70 |
0 |
1 |
5 |
2 |
| Lotus Europa |
30.4 |
4 |
95.1 |
113 |
3.77 |
1.513 |
16.90 |
1 |
1 |
5 |
2 |
| Ford Pantera L |
15.8 |
8 |
351.0 |
264 |
4.22 |
3.170 |
14.50 |
0 |
1 |
5 |
4 |
| Ferrari Dino |
19.7 |
6 |
145.0 |
175 |
3.62 |
2.770 |
15.50 |
0 |
1 |
5 |
6 |
| Maserati Bora |
15.0 |
8 |
301.0 |
335 |
3.54 |
3.570 |
14.60 |
0 |
1 |
5 |
8 |
| Volvo 142E |
21.4 |
4 |
121.0 |
109 |
4.11 |
2.780 |
18.60 |
1 |
1 |
4 |
2 |
4
mpg cyl disp hp drat wt qsec vs am gear carb
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
6
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
8
mpg cyl disp hp drat wt qsec vs am gear \
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5
carb
Hornet Sportabout 2
Duster 360 4
Merc 450SE 3
Merc 450SL 3
Merc 450SLC 3
Cadillac Fleetwood 4
Lincoln Continental 4
Chrysler Imperial 4
Dodge Challenger 2
AMC Javelin 2
Camaro Z28 4
Pontiac Firebird 2
Ford Pantera L 4
Maserati Bora 8
Out[24]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f7bd3ab7b38>
Out[25]:
|
ACCESSION |
AGE_Years |
SEX |
AA_Interp |
Alanine_P |
Arginine_P |
Aspartic_acid_P |
Citrulline_P |
Glutamine_P |
Glutamic_acid_P |
... |
Ornithine_P |
Phenylalanine_P |
Proline_P |
Serine_P |
Taurine_P |
Threonine_P |
Tyrosine_P |
Valine_P |
Homocysteine_P |
Cysteine_P |
| 0 |
9020101689 |
0.000000 |
F |
Normal |
332 |
79 |
9 |
18 |
612 |
41 |
... |
74 |
62 |
167 |
177 |
127 |
317 |
57 |
161 |
0 |
53 |
| 1 |
9058109237 |
0.000000 |
F |
Normal |
293 |
44 |
7 |
9 |
467 |
63 |
... |
49 |
46 |
133 |
138 |
138 |
300 |
74 |
152 |
0 |
26 |
| 2 |
9161128247 |
0.000000 |
M |
Normal |
437 |
30 |
7 |
18 |
671 |
85 |
... |
57 |
56 |
231 |
164 |
135 |
205 |
56 |
116 |
0 |
32 |
| 3 |
9175120582 |
0.000000 |
M |
Normal |
361 |
32 |
9 |
27 |
487 |
62 |
... |
100 |
52 |
118 |
136 |
92 |
228 |
55 |
123 |
0 |
37 |
| 4 |
9181544801 |
0.000000 |
F |
Normal |
555 |
86 |
10 |
37 |
594 |
90 |
... |
72 |
47 |
256 |
140 |
91 |
204 |
92 |
263 |
0 |
36 |
| 5 |
9224120862 |
0.000000 |
M |
Normal |
251 |
33 |
5 |
13 |
578 |
45 |
... |
43 |
45 |
205 |
168 |
216 |
232 |
101 |
160 |
0 |
29 |
| 6 |
9274552153 |
0.000000 |
M |
Normal |
480 |
15 |
14 |
17 |
640 |
74 |
... |
61 |
45 |
257 |
159 |
248 |
183 |
61 |
113 |
0 |
43 |
| 7 |
9365109752 |
0.000000 |
F |
Normal |
177 |
32 |
7 |
9 |
556 |
58 |
... |
33 |
67 |
207 |
216 |
305 |
92 |
52 |
107 |
0 |
23 |
| 8 |
10054500609 |
0.000000 |
M |
Normal |
247 |
69 |
7 |
27 |
445 |
41 |
... |
39 |
43 |
81 |
123 |
38 |
99 |
56 |
191 |
0 |
20 |
| 9 |
10065108843 |
0.000000 |
F |
Normal |
373 |
41 |
23 |
35 |
610 |
98 |
... |
59 |
69 |
263 |
179 |
128 |
187 |
81 |
189 |
0 |
41 |
| 10 |
10099121224 |
0.000000 |
F |
Normal |
525 |
62 |
10 |
28 |
674 |
48 |
... |
101 |
60 |
202 |
214 |
121 |
151 |
86 |
123 |
0 |
61 |
| 11 |
10223134328 |
0.000000 |
F |
Normal |
130 |
80 |
28 |
21 |
332 |
181 |
... |
145 |
80 |
193 |
122 |
205 |
115 |
37 |
165 |
0 |
32 |
| 12 |
10266107979 |
0.000000 |
F |
Normal |
598 |
36 |
7 |
30 |
582 |
92 |
... |
112 |
49 |
275 |
139 |
166 |
189 |
106 |
116 |
0 |
29 |
| 13 |
10310300418 |
0.000000 |
M |
Normal |
321 |
22 |
4 |
8 |
437 |
49 |
... |
28 |
48 |
305 |
80 |
90 |
96 |
62 |
69 |
0 |
21 |
| 14 |
10321125435 |
0.000000 |
M |
Normal |
442 |
27 |
14 |
16 |
624 |
69 |
... |
82 |
48 |
178 |
204 |
193 |
204 |
53 |
137 |
0 |
45 |
| 15 |
10351127644 |
0.000000 |
F |
Normal |
190 |
28 |
25 |
10 |
487 |
103 |
... |
100 |
58 |
128 |
173 |
127 |
130 |
86 |
132 |
0 |
32 |
| 16 |
10354112499 |
0.000000 |
M |
Normal |
231 |
32 |
8 |
16 |
666 |
44 |
... |
48 |
53 |
382 |
228 |
96 |
162 |
58 |
99 |
0 |
17 |
| 17 |
11090118522 |
0.000000 |
F |
Normal |
403 |
87 |
11 |
9 |
633 |
67 |
... |
49 |
97 |
216 |
151 |
283 |
261 |
112 |
122 |
0 |
28 |
| 18 |
11174117272 |
0.000000 |
F |
Normal |
264 |
31 |
13 |
14 |
633 |
56 |
... |
83 |
53 |
135 |
236 |
164 |
168 |
58 |
102 |
0 |
34 |
| 19 |
11185105907 |
0.000000 |
M |
Normal |
331 |
41 |
9 |
20 |
570 |
81 |
... |
53 |
51 |
138 |
107 |
299 |
209 |
70 |
119 |
0 |
40 |
| 20 |
11245124770 |
0.000000 |
M |
Normal |
260 |
50 |
7 |
14 |
388 |
77 |
... |
39 |
51 |
105 |
129 |
228 |
232 |
53 |
117 |
0 |
23 |
| 21 |
11315126467 |
0.000000 |
F |
Normal |
327 |
56 |
8 |
11 |
853 |
22 |
... |
58 |
97 |
204 |
184 |
55 |
159 |
98 |
184 |
0 |
47 |
| 22 |
11331104296 |
0.000000 |
F |
Normal |
278 |
23 |
6 |
11 |
509 |
66 |
... |
36 |
49 |
142 |
121 |
118 |
149 |
54 |
78 |
0 |
39 |
| 23 |
12079124994 |
0.000000 |
M |
Normal |
350 |
41 |
6 |
20 |
457 |
36 |
... |
95 |
49 |
248 |
112 |
203 |
160 |
80 |
118 |
0 |
59 |
| 24 |
12123122305 |
0.000000 |
M |
Normal |
358 |
72 |
4 |
35 |
671 |
17 |
... |
30 |
47 |
197 |
121 |
67 |
93 |
59 |
161 |
0 |
39 |
| 25 |
12200131746 |
0.000000 |
M |
Normal |
430 |
98 |
12 |
12 |
687 |
56 |
... |
110 |
88 |
258 |
258 |
102 |
239 |
67 |
211 |
0 |
39 |
| 26 |
12230124486 |
0.000000 |
M |
Normal |
388 |
52 |
17 |
16 |
737 |
79 |
... |
106 |
89 |
201 |
226 |
230 |
238 |
93 |
124 |
0 |
41 |
| 27 |
12236125128 |
0.000000 |
M |
Normal |
337 |
60 |
10 |
12 |
437 |
69 |
... |
54 |
80 |
180 |
123 |
316 |
289 |
120 |
170 |
0 |
25 |
| 28 |
12265105031 |
0.000000 |
M |
Normal |
322 |
157 |
11 |
12 |
572 |
57 |
... |
106 |
62 |
199 |
169 |
51 |
116 |
133 |
174 |
0 |
27 |
| 29 |
13043544813 |
0.000000 |
F |
Normal |
205 |
77 |
8 |
16 |
584 |
53 |
... |
54 |
52 |
161 |
115 |
46 |
105 |
54 |
220 |
0 |
31 |
| ... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
... |
| 13843 |
13352109849 |
3.969883 |
F |
Normal |
418 |
80 |
11 |
21 |
587 |
28 |
... |
42 |
48 |
246 |
123 |
67 |
90 |
72 |
183 |
0 |
29 |
| 13844 |
9315122955 |
3.972621 |
M |
Normal |
280 |
74 |
7 |
31 |
533 |
44 |
... |
81 |
56 |
160 |
145 |
54 |
113 |
79 |
227 |
0 |
41 |
| 13845 |
10048106347 |
3.972621 |
M |
Normal |
217 |
55 |
4 |
26 |
455 |
25 |
... |
45 |
45 |
142 |
113 |
48 |
70 |
62 |
168 |
0 |
24 |
| 13846 |
13348108612 |
3.972621 |
M |
Normal |
239 |
94 |
14 |
34 |
604 |
33 |
... |
57 |
41 |
115 |
169 |
55 |
98 |
60 |
155 |
0 |
22 |
| 13847 |
12192131427 |
3.975359 |
M |
Normal |
324 |
59 |
5 |
36 |
445 |
25 |
... |
70 |
64 |
207 |
125 |
69 |
119 |
98 |
204 |
0 |
22 |
| 13848 |
9117125753 |
3.978097 |
F |
Normal |
267 |
65 |
11 |
49 |
484 |
81 |
... |
58 |
56 |
205 |
131 |
150 |
145 |
77 |
240 |
0 |
20 |
| 13849 |
12058131812 |
3.978097 |
M |
Normal |
352 |
84 |
8 |
32 |
462 |
93 |
... |
89 |
62 |
366 |
154 |
132 |
157 |
122 |
279 |
0 |
31 |
| 13850 |
13294132313 |
3.978097 |
F |
Normal |
282 |
75 |
11 |
33 |
578 |
16 |
... |
55 |
59 |
268 |
104 |
50 |
81 |
72 |
239 |
0 |
17 |
| 13851 |
10160101208 |
3.980835 |
M |
Normal |
385 |
76 |
3 |
42 |
561 |
25 |
... |
49 |
41 |
156 |
121 |
55 |
129 |
49 |
174 |
0 |
34 |
| 13852 |
11193117260 |
3.980835 |
F |
Normal |
438 |
40 |
8 |
17 |
562 |
41 |
... |
61 |
45 |
106 |
132 |
78 |
100 |
53 |
157 |
0 |
24 |
| 13853 |
9260113090 |
3.986310 |
F |
Normal |
419 |
59 |
3 |
32 |
518 |
16 |
... |
52 |
80 |
207 |
125 |
38 |
93 |
73 |
234 |
0 |
28 |
| 13854 |
10134107903 |
3.986310 |
F |
Normal |
386 |
44 |
4 |
17 |
460 |
22 |
... |
37 |
38 |
228 |
141 |
57 |
135 |
50 |
215 |
0 |
34 |
| 13855 |
10315131040 |
3.986310 |
F |
Normal |
239 |
81 |
4 |
30 |
470 |
49 |
... |
71 |
57 |
177 |
151 |
52 |
131 |
75 |
282 |
0 |
46 |
| 13856 |
11361301446 |
3.986310 |
U |
Normal |
256 |
44 |
10 |
44 |
352 |
192 |
... |
69 |
46 |
229 |
98 |
135 |
88 |
46 |
211 |
0 |
2 |
| 13857 |
11362300162 |
3.989048 |
U |
Normal |
478 |
90 |
7 |
23 |
422 |
95 |
... |
53 |
55 |
203 |
140 |
79 |
108 |
55 |
150 |
0 |
1 |
| 13858 |
12004133840 |
3.989048 |
M |
Normal |
260 |
79 |
4 |
31 |
500 |
25 |
... |
47 |
38 |
152 |
126 |
47 |
92 |
47 |
190 |
0 |
20 |
| 13859 |
11286115881 |
3.991786 |
M |
Normal |
270 |
73 |
5 |
27 |
580 |
29 |
... |
30 |
47 |
80 |
102 |
64 |
76 |
37 |
155 |
0 |
36 |
| 13860 |
13091127554 |
3.991786 |
M |
Normal |
126 |
40 |
6 |
14 |
327 |
10 |
... |
26 |
72 |
200 |
86 |
35 |
88 |
75 |
288 |
0 |
26 |
| 13861 |
13150104063 |
3.991786 |
M |
Normal |
335 |
74 |
9 |
30 |
573 |
43 |
... |
67 |
62 |
178 |
130 |
44 |
101 |
81 |
203 |
0 |
30 |
| 13862 |
13162104789 |
3.991786 |
M |
Normal |
227 |
52 |
6 |
19 |
561 |
48 |
... |
34 |
43 |
106 |
165 |
36 |
110 |
43 |
180 |
0 |
28 |
| 13863 |
13323113589 |
3.991786 |
M |
Normal |
241 |
48 |
13 |
26 |
528 |
24 |
... |
44 |
58 |
380 |
105 |
47 |
96 |
77 |
288 |
0 |
24 |
| 13864 |
10211127309 |
3.994524 |
M |
Normal |
200 |
29 |
5 |
37 |
474 |
39 |
... |
64 |
43 |
74 |
114 |
46 |
72 |
47 |
192 |
0 |
33 |
| 13865 |
12047121447 |
3.994524 |
F |
Normal |
209 |
64 |
3 |
29 |
457 |
24 |
... |
41 |
47 |
152 |
84 |
36 |
107 |
48 |
201 |
0 |
22 |
| 13866 |
9095103307 |
3.997262 |
F |
Normal |
193 |
39 |
8 |
4 |
438 |
57 |
... |
37 |
63 |
106 |
116 |
80 |
65 |
48 |
136 |
0 |
18 |
| 13867 |
10172115731 |
3.997262 |
F |
Normal |
317 |
38 |
6 |
24 |
472 |
39 |
... |
44 |
59 |
271 |
119 |
33 |
68 |
53 |
173 |
0 |
21 |
| 13868 |
10263121559 |
3.997262 |
F |
Normal |
280 |
69 |
4 |
31 |
564 |
20 |
... |
41 |
59 |
99 |
102 |
47 |
84 |
56 |
213 |
0 |
25 |
| 13869 |
12086300135 |
3.997262 |
U |
Normal |
489 |
69 |
11 |
31 |
524 |
83 |
... |
67 |
56 |
318 |
142 |
129 |
106 |
71 |
165 |
0 |
10 |
| 13870 |
13166105842 |
3.997262 |
M |
Normal |
238 |
56 |
7 |
37 |
512 |
28 |
... |
32 |
59 |
237 |
107 |
58 |
77 |
60 |
195 |
0 |
21 |
| 13871 |
13217102895 |
3.997262 |
M |
Normal |
244 |
63 |
13 |
18 |
426 |
51 |
... |
34 |
50 |
163 |
83 |
43 |
72 |
44 |
201 |
0 |
25 |
| 13872 |
12031133330 |
4.000000 |
M |
Normal |
479 |
49 |
8 |
28 |
406 |
33 |
... |
33 |
61 |
239 |
121 |
51 |
101 |
53 |
139 |
0 |
13 |
13873 rows × 27 columns
Out[26]:
Index(['ACCESSION', 'AGE_Years', 'SEX', 'AA_Interp', 'Alanine_P', 'Arginine_P',
'Aspartic_acid_P', 'Citrulline_P', 'Glutamine_P', 'Glutamic_acid_P',
'Glycine_P', 'Histidine_P', 'Hydroxyproline_P', 'Isoleucine_P',
'Leucine_P', 'Lysine_P', 'Methionine_P', 'Ornithine_P',
'Phenylalanine_P', 'Proline_P', 'Serine_P', 'Taurine_P', 'Threonine_P',
'Tyrosine_P', 'Valine_P', 'Homocysteine_P', 'Cysteine_P'],
dtype='object')
0
0 Ala A Alanine
1 Arg R Arginine
2 Asn N Asparagine
3 Asp D Aspartic acid
4 Cit C Citrulline
Out[28]:
|
0 |
1 |
2 |
| 0 |
Ala |
A |
Alanine |
| 1 |
Arg |
R |
Arginine |
| 2 |
Asn |
N |
Asparagine |
| 3 |
Asp |
D |
Aspartic acid |
| 4 |
Cit |
C |
Citrulline |
Out[29]:
|
0 |
1 |
2 |
| 22 |
Trp |
W |
Tryptophan |
| 23 |
Tyr |
Y |
Tyrosine |
| 24 |
Val |
V |
Valine |
| 25 |
Xaa |
X |
Any amino acid |
| 26 |
TERM |
termination codon |
NaN |
Out[33]:
|
Abbreviation |
First letter |
| Amino acid |
|
|
| Alanine |
Ala |
A |
| Arginine |
Arg |
R |
| Asparagine |
Asn |
N |
| Aspartic acid |
Asp |
D |
| Citrulline |
Cit |
C |
Abbreviation First letter
Amino acid
Alanine Ala A
Arginine Arg R
Asparagine Asn N
Aspartic acid Asp D
Citrulline Cit C
Out[36]:
|
AGE_Years |
SEX |
AA_Interp |
Ala |
Arg |
Asp |
Cit |
Gln |
Glu |
Gly |
... |
Orn |
Phe |
Pro |
Ser |
Tau |
Thr |
Tyr |
Val |
Hcy |
Cys |
| ACCESSION |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9020101689 |
0 |
F |
Normal |
332 |
79 |
9 |
18 |
612 |
41 |
347 |
... |
74 |
62 |
167 |
177 |
127 |
317 |
57 |
161 |
0 |
53 |
| 9058109237 |
0 |
F |
Normal |
293 |
44 |
7 |
9 |
467 |
63 |
274 |
... |
49 |
46 |
133 |
138 |
138 |
300 |
74 |
152 |
0 |
26 |
| 9161128247 |
0 |
M |
Normal |
437 |
30 |
7 |
18 |
671 |
85 |
302 |
... |
57 |
56 |
231 |
164 |
135 |
205 |
56 |
116 |
0 |
32 |
| 9175120582 |
0 |
M |
Normal |
361 |
32 |
9 |
27 |
487 |
62 |
356 |
... |
100 |
52 |
118 |
136 |
92 |
228 |
55 |
123 |
0 |
37 |
| 9181544801 |
0 |
F |
Normal |
555 |
86 |
10 |
37 |
594 |
90 |
201 |
... |
72 |
47 |
256 |
140 |
91 |
204 |
92 |
263 |
0 |
36 |
5 rows × 26 columns
DataFrame columns are Series
Out[37]:
ACCESSION
9020101689 0
9058109237 0
9161128247 0
9175120582 0
9181544801 0
Name: Hcy, dtype: int64
Out[39]:
|
AGE_Years |
SEX |
AA_Interp |
Ala |
Arg |
Asp |
Cit |
Gln |
Glu |
Gly |
... |
Met |
Orn |
Phe |
Pro |
Ser |
Tau |
Thr |
Tyr |
Val |
Cys |
| ACCESSION |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9020101689 |
0 |
F |
Normal |
332 |
79 |
9 |
18 |
612 |
41 |
347 |
... |
33 |
74 |
62 |
167 |
177 |
127 |
317 |
57 |
161 |
53 |
| 9058109237 |
0 |
F |
Normal |
293 |
44 |
7 |
9 |
467 |
63 |
274 |
... |
21 |
49 |
46 |
133 |
138 |
138 |
300 |
74 |
152 |
26 |
| 9161128247 |
0 |
M |
Normal |
437 |
30 |
7 |
18 |
671 |
85 |
302 |
... |
27 |
57 |
56 |
231 |
164 |
135 |
205 |
56 |
116 |
32 |
| 9175120582 |
0 |
M |
Normal |
361 |
32 |
9 |
27 |
487 |
62 |
356 |
... |
26 |
100 |
52 |
118 |
136 |
92 |
228 |
55 |
123 |
37 |
| 9181544801 |
0 |
F |
Normal |
555 |
86 |
10 |
37 |
594 |
90 |
201 |
... |
36 |
72 |
47 |
256 |
140 |
91 |
204 |
92 |
263 |
36 |
5 rows × 25 columns
Out[40]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f7bd37940f0>
Out[41]:
|
AGE_Years |
Ala |
Arg |
Asp |
Cit |
Gln |
Glu |
Gly |
His |
Hyp |
... |
Met |
Orn |
Phe |
Pro |
Ser |
Tau |
Thr |
Tyr |
Val |
Cys |
| count |
13873.000000 |
13873.000000 |
13873.000000 |
13873.000000 |
13873.000000 |
13873.000000 |
13873.000000 |
13873.000000 |
13873.000000 |
13873.000000 |
... |
13873.000000 |
13873.000000 |
13870.000000 |
13873.000000 |
13873.000000 |
13873.000000 |
13873.000000 |
13870.000000 |
13873.000000 |
13873.000000 |
| mean |
1.105445 |
326.839977 |
70.525337 |
10.814171 |
22.640957 |
554.153968 |
70.019174 |
243.505658 |
93.974915 |
28.016939 |
... |
26.217184 |
68.269228 |
52.744845 |
193.419952 |
141.426800 |
76.562676 |
136.559720 |
69.575198 |
194.570605 |
26.937865 |
| std |
1.115121 |
96.904859 |
25.643201 |
7.195245 |
9.284156 |
107.989384 |
43.717879 |
68.677978 |
24.330960 |
22.161957 |
... |
9.445003 |
29.802001 |
12.840800 |
66.666766 |
39.858176 |
38.963828 |
60.388284 |
23.746333 |
61.780048 |
9.311415 |
| min |
0.000000 |
92.000000 |
0.000000 |
0.000000 |
0.000000 |
30.000000 |
8.000000 |
76.000000 |
17.000000 |
0.000000 |
... |
6.000000 |
15.000000 |
8.000000 |
0.000000 |
47.000000 |
2.000000 |
30.000000 |
7.000000 |
29.000000 |
0.000000 |
| 25% |
0.172484 |
254.000000 |
52.000000 |
6.000000 |
16.000000 |
480.000000 |
42.000000 |
194.000000 |
76.000000 |
13.000000 |
... |
19.000000 |
47.000000 |
43.000000 |
146.000000 |
116.000000 |
53.000000 |
95.000000 |
52.000000 |
150.000000 |
21.000000 |
| 50% |
0.684462 |
316.000000 |
68.000000 |
9.000000 |
22.000000 |
545.000000 |
59.000000 |
233.000000 |
90.000000 |
25.000000 |
... |
24.000000 |
62.000000 |
51.000000 |
184.000000 |
134.000000 |
67.000000 |
122.000000 |
65.000000 |
186.000000 |
26.000000 |
| 75% |
1.804243 |
391.000000 |
86.000000 |
13.000000 |
28.000000 |
618.000000 |
85.000000 |
282.000000 |
109.000000 |
41.000000 |
... |
32.000000 |
83.000000 |
61.000000 |
229.000000 |
157.000000 |
89.000000 |
163.000000 |
84.000000 |
230.000000 |
32.000000 |
| max |
4.000000 |
624.000000 |
190.000000 |
78.000000 |
68.000000 |
959.000000 |
563.000000 |
537.000000 |
271.000000 |
338.000000 |
... |
65.000000 |
285.000000 |
113.000000 |
751.000000 |
569.000000 |
588.000000 |
687.000000 |
151.000000 |
594.000000 |
94.000000 |
8 rows × 23 columns
Out[44]:
|
SEX |
AA_Interp |
Ala |
Arg |
Asp |
Cit |
Gln |
Glu |
Gly |
His |
... |
Met |
Orn |
Phe |
Pro |
Ser |
Tau |
Thr |
Tyr |
Val |
Cys |
| AGE_Years |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 0 |
5922 |
5922 |
5922 |
5922 |
5922 |
5922 |
5922 |
5922 |
5922 |
5922 |
... |
5922 |
5922 |
5921 |
5922 |
5922 |
5922 |
5922 |
5920 |
5922 |
5922 |
| 1 |
3772 |
3772 |
3772 |
3772 |
3772 |
3772 |
3772 |
3772 |
3772 |
3772 |
... |
3772 |
3772 |
3772 |
3772 |
3772 |
3772 |
3772 |
3772 |
3772 |
3772 |
| 2 |
2027 |
2027 |
2027 |
2027 |
2027 |
2027 |
2027 |
2027 |
2027 |
2027 |
... |
2027 |
2027 |
2025 |
2027 |
2027 |
2027 |
2027 |
2027 |
2027 |
2027 |
| 3 |
1543 |
1543 |
1543 |
1543 |
1543 |
1543 |
1543 |
1543 |
1543 |
1543 |
... |
1543 |
1543 |
1543 |
1543 |
1543 |
1543 |
1543 |
1542 |
1543 |
1543 |
| 4 |
609 |
609 |
609 |
609 |
609 |
609 |
609 |
609 |
609 |
609 |
... |
609 |
609 |
609 |
609 |
609 |
609 |
609 |
609 |
609 |
609 |
5 rows × 24 columns
Out[45]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f7bd33c7438>
Out[46]:
Ala 4534251
Arg 978398
Asp 150025
Cit 314098
Gln 7687778
Glu 971376
Gly 3378154
His 1303714
Hyp 388679
Ile 808715
Leu 1541011
Lys 2165406
Met 363711
Orn 947099
Phe 731571
Pro 2683315
Ser 1962014
Tau 1062154
Thr 1894493
Tyr 965008
Val 2699278
Cys 373709
dtype: float64
Out[47]:
ACCESSION
9020101689 3182
9058109237 2646
9161128247 2975
9175120582 2731
9181544801 3440
9224120862 2748
9274552153 3133
9365109752 2597
10054500609 2135
10065108843 3244
10099121224 3315
10223134328 2678
10266107979 3341
10310300418 2218
10321125435 3075
10351127644 2650
10354112499 2814
11090118522 3335
11174117272 2845
11185105907 2890
11245124770 2402
11315126467 3218
11331104296 2322
12079124994 2600
12123122305 2632
12200131746 3721
12230124486 3615
12236125128 3120
12265105031 3012
13043544813 2597
...
13352109849 2742
9315122955 2702
10048106347 2033
13348108612 2500
12192131427 2523
9117125753 2791
12058131812 3226
13294132313 2523
10160101208 2533
11193117260 2467
9260113090 2622
10134107903 2644
10315131040 2618
11361301446 2382
11362300162 2541
12004133840 2274
11286115881 2183
13091127554 1974
13150104063 2675
13162104789 2313
13323113589 2661
10211127309 2113
12047121447 2101
9095103307 1997
10172115731 2352
10263121559 2360
12086300135 2965
13166105842 2378
13217102895 2050
12031133330 2455
dtype: float64
Out[48]:
|
Ala |
Arg |
Asp |
Cit |
Gln |
Glu |
Gly |
His |
Hyp |
Ile |
... |
Met |
Orn |
Phe |
Pro |
Ser |
Tau |
Thr |
Tyr |
Val |
Cys |
| ACCESSION |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9020101689 |
1.533797e+144 |
2.038281e+34 |
8103.083928 |
6.565997e+07 |
6.140771e+265 |
6.398435e+17 |
5.014010e+150 |
1.084464e+46 |
9.744803e+09 |
4.727839e+18 |
... |
2.146436e+14 |
1.373383e+32 |
8.438357e+26 |
3.366499e+72 |
7.415207e+76 |
1.430208e+55 |
4.691922e+137 |
5.685720e+24 |
8.344716e+69 |
1.041376e+23 |
| 9058109237 |
1.771264e+127 |
1.285160e+19 |
1096.633158 |
8.103084e+03 |
6.539176e+202 |
2.293783e+27 |
9.924029e+118 |
3.637971e+42 |
3.269017e+06 |
4.311232e+15 |
... |
1.318816e+09 |
1.907347e+21 |
9.496119e+19 |
5.769871e+57 |
8.563248e+59 |
8.563248e+59 |
1.942426e+130 |
1.373383e+32 |
1.029820e+66 |
1.957296e+11 |
| 9161128247 |
6.119115e+189 |
1.068647e+13 |
1096.633158 |
6.565997e+07 |
2.579867e+291 |
8.223013e+36 |
1.435270e+131 |
6.663176e+40 |
2.146436e+14 |
1.784823e+08 |
... |
5.320482e+11 |
5.685720e+24 |
2.091659e+24 |
2.099062e+100 |
1.676081e+71 |
4.263390e+58 |
1.072430e+89 |
2.091659e+24 |
2.388691e+50 |
7.896296e+13 |
| 9175120582 |
6.029870e+156 |
7.896296e+13 |
8103.083928 |
5.320482e+11 |
3.172581e+211 |
8.438357e+26 |
4.062895e+154 |
1.506097e+35 |
3.931334e+12 |
9.744803e+09 |
... |
1.957296e+11 |
2.688117e+43 |
3.831008e+22 |
1.765017e+51 |
1.158910e+59 |
9.017628e+39 |
1.045062e+99 |
7.694785e+23 |
2.619517e+53 |
1.171914e+16 |
| 9181544801 |
1.080034e+241 |
2.235247e+37 |
22026.465795 |
1.171914e+16 |
9.352382e+257 |
1.220403e+39 |
1.964223e+87 |
1.935576e+54 |
4.311232e+15 |
1.220403e+39 |
... |
4.311232e+15 |
1.858672e+31 |
2.581313e+20 |
1.511428e+111 |
6.327432e+60 |
3.317400e+39 |
3.945248e+88 |
9.017628e+39 |
1.657482e+114 |
4.311232e+15 |
5 rows × 22 columns
Out[49]:
|
Hair |
Eye |
Sex |
Freq |
| 1 |
Black |
Brown |
Male |
32 |
| 2 |
Brown |
Brown |
Male |
53 |
| 3 |
Red |
Brown |
Male |
10 |
| 4 |
Blond |
Brown |
Male |
3 |
| 5 |
Black |
Blue |
Male |
11 |
Out[50]:
|
Eye |
Sex |
Freq |
| 3 |
Brown |
Male |
10 |
| 4 |
Brown |
Male |
3 |
| 5 |
Blue |
Male |
11 |
| 6 |
Blue |
Male |
50 |
Out[51]:
|
Hair |
Eye |
| 5 |
Black |
Blue |
| 6 |
Brown |
Blue |
| 7 |
Red |
Blue |
| 8 |
Blond |
Blue |
Out[52]:
|
Eye |
Freq |
Hair |
Sex |
| 3 |
Brown |
10 |
NaN |
Male |
| 4 |
Brown |
3 |
NaN |
Male |
| 5 |
Blue |
11 |
NaN |
Male |
| 6 |
Blue |
50 |
NaN |
Male |
| 5 |
Blue |
NaN |
Black |
NaN |
| 6 |
Blue |
NaN |
Brown |
NaN |
| 7 |
Blue |
NaN |
Red |
NaN |
| 8 |
Blue |
NaN |
Blond |
NaN |
Out[54]:
|
Eye |
Freq |
Hair |
Sex |
| 3 |
Brown |
10 |
NaN |
Male |
| 4 |
Brown |
3 |
NaN |
Male |
| 5 |
Blue |
11 |
NaN |
Male |
| 6 |
Blue |
50 |
NaN |
Male |
Out[55]:
|
first_name |
last_name |
city |
state |
| 0 |
Art |
Venere |
Bridgeport |
NJ |
| 1 |
Lenna |
Paprocki |
Anchorage |
AK |
| 2 |
Donette |
Foller |
Hamilton |
OH |
| 3 |
Simona |
Morasca |
Ashland |
OH |
Out[56]:
|
first_name |
last_name |
zip |
| 0 |
Donette |
Foller |
45011 |
| 1 |
Simona |
Morasca |
44805 |
| 2 |
Mitsue |
Tollner |
60632 |
| 3 |
Leota |
Dilliard |
95111 |
Out[57]:
|
first_name |
last_name |
city |
state |
zip |
| 0 |
Art |
Venere |
Bridgeport |
NJ |
NaN |
| 1 |
Lenna |
Paprocki |
Anchorage |
AK |
NaN |
| 2 |
Donette |
Foller |
Hamilton |
OH |
45011 |
| 3 |
Simona |
Morasca |
Ashland |
OH |
44805 |
| 4 |
Mitsue |
Tollner |
NaN |
NaN |
60632 |
| 5 |
Leota |
Dilliard |
NaN |
NaN |
95111 |
Out[58]:
|
first_name |
last_name |
city |
state |
zip |
| 0 |
Art |
Venere |
Bridgeport |
NJ |
NaN |
| 1 |
Lenna |
Paprocki |
Anchorage |
AK |
NaN |
| 2 |
Donette |
Foller |
Hamilton |
OH |
45011 |
| 3 |
Simona |
Morasca |
Ashland |
OH |
44805 |
Out[59]:
|
first_name |
last_name |
city |
state |
zip |
| 0 |
Donette |
Foller |
Hamilton |
OH |
45011 |
| 1 |
Simona |
Morasca |
Ashland |
OH |
44805 |
| 2 |
Mitsue |
Tollner |
NaN |
NaN |
60632 |
| 3 |
Leota |
Dilliard |
NaN |
NaN |
95111 |
Out[60]:
|
first_name |
last_name |
city |
state |
zip |
| 0 |
Donette |
Foller |
Hamilton |
OH |
45011 |
| 1 |
Simona |
Morasca |
Ashland |
OH |
44805 |
df <- data.frame(a=rnorm(5), b=rnorm(5), c=rnorm(5), d=rnorm(5), e=rnorm(5))
df[, c("a", "c", "e")]
Out[61]:
|
a |
c |
| 0 |
-0.335175 |
0.092877 |
| 1 |
-0.122592 |
-0.336803 |
| 2 |
1.262740 |
-2.169056 |
| 3 |
0.638697 |
0.761669 |
df <- data.frame(
v1 = c(1,3,5,7,8,3,5,NA,4,5,7,9),
v2 = c(11,33,55,77,88,33,55,NA,44,55,77,99),
by1 = c("red", "blue", 1, 2, NA, "big", 1, 2, "red", 1, NA, 12),
by2 = c("wet", "dry", 99, 95, NA, "damp", 95, 99, "red", 99, NA, NA))
aggregate(x=df[, c("v1", "v2")], by=list(mydf2$by1, mydf2$by2), FUN = mean)
Out[62]:
|
by1 |
by2 |
v1 |
v2 |
| 0 |
red |
wet |
1 |
11 |
| 1 |
blue |
dry |
3 |
33 |
| 2 |
1 |
99 |
5 |
55 |
| 3 |
2 |
95 |
7 |
77 |
| 4 |
NaN |
NaN |
8 |
88 |
| 5 |
big |
damp |
3 |
33 |
| 6 |
1 |
95 |
5 |
55 |
| 7 |
2 |
99 |
NaN |
NaN |
| 8 |
red |
red |
4 |
44 |
| 9 |
1 |
99 |
5 |
55 |
| 10 |
NaN |
NaN |
7 |
77 |
| 11 |
12 |
NaN |
9 |
99 |
Out[63]:
|
|
v1 |
v2 |
| by1 |
by2 |
|
|
| 1 |
95 |
5 |
55 |
| 99 |
5 |
55 |
| 2 |
95 |
7 |
77 |
| 99 |
NaN |
NaN |
| big |
damp |
3 |
33 |
| blue |
dry |
3 |
33 |
| red |
red |
4 |
44 |
| wet |
1 |
11 |
s <- 0:4
s %in% c(2,4)
Out[64]:
0 False
1 False
2 True
3 False
4 True
dtype: bool
s <- 0:4
match(s, c(2,4))
Out[65]:
0 NaN
1 NaN
2 0
3 NaN
4 1
dtype: float64
baseball <-
data.frame(team = gl(5, 5,
labels = paste("Team", LETTERS[1:5])),
player = sample(letters, 25),
batting.average = runif(25, .200, .400))
tapply(baseball$batting.average, baseball.example$team,
max)
Out[66]:
|
batting avg |
player |
team |
| 0 |
0.328316 |
p |
team 1 |
| 1 |
0.218720 |
k |
team 2 |
| 2 |
0.371300 |
b |
team 3 |
| 3 |
0.289187 |
v |
team 4 |
| 4 |
0.242803 |
w |
team 5 |
Out[67]:
team
team 1 0.356478
team 2 0.399268
team 3 0.385549
team 4 0.300849
team 5 0.389789
Name: batting avg, dtype: float64
df <- data.frame(a=rnorm(10), b=rnorm(10))
subset(df, a <= b)
df[df$a <= df$b,]
Out[68]:
|
a |
b |
| 1 |
-1.193466 |
0.703511 |
| 4 |
-1.208578 |
1.187422 |
| 6 |
-0.741790 |
-0.125572 |
| 9 |
-3.327805 |
0.599588 |
df <- data.frame(a=rnorm(10), b=rnorm(10))
with(df, a + b)
Out[69]:
0 1.576161
1 -0.489955
2 1.321139
3 -0.435031
4 -0.021156
5 -1.244591
6 -0.867362
7 0.622398
8 1.777159
9 -2.728216
dtype: float64
rpy2: R data frame support
Out[70]:
|
Sepal.Length |
Sepal.Width |
Petal.Length |
Petal.Width |
Species |
| 0 |
5.1 |
3.5 |
1.4 |
0.2 |
setosa |
| 1 |
4.9 |
3.0 |
1.4 |
0.2 |
setosa |
| 2 |
4.7 |
3.2 |
1.3 |
0.2 |
setosa |
| 3 |
4.6 |
3.1 |
1.5 |
0.2 |
setosa |
| 4 |
5.0 |
3.6 |
1.4 |
0.2 |
setosa |
- ###Pandas + Python
- General-purpose programming language
- Strong object-oriented capabilities
- SciPy - library of scientific computing routines
- scikit-learn - machine learning toolkit
- ###R
- Very large library of statistical functions
- Large statistics-oriented support base
- Older thus wiser